Page 195 - 데이터과학 무엇을 하는가? 전자책
P. 195

다음은 다양한 기계학습 알고리즘을 정리한 것이다.



                     다양한 기계학습  고리
                      기계학습 분류                          고리
                                  Logistic regression, decision tree, nearest-neighbor classifier,
                      분류          kernel discriminate analysis, neural network, support vector
                                  machine, random forest, boosted tree

                                  Linear regression, regression tree, kernel regression, support
                      예
                                  vector regression
                                  Principal component analysis, non-negative matrix factorization,
                      차원(변수) 축소
                                  independent component analysis, manifold learning, SVD
                                  k-means, hierarchical clustering, mean-shift, self-organizing
                      그룹화
                                  maps(SOMs)
                      선행학 (Pre-   Deep Learning(Stacked Restricted Boltzmann Machine, Stacked
                      training),  Auto-Encoders등을 사용한 Multi layers Neural Nets, Non-linear
                      2차 분류       Transformation)
                                  Bipartite cross-matching, n-point correlation two-sample testing,
                      데이터 비교
                                  minimum spanning tree



                       위 표에 소개된 기계학습 알고리즘들은 꾸준히 발전해 왔는데, 최근
                     눈에  게 발전한 알고리즘은 다  신경망(Neural Network)을 기초로 발

                     전한  러 (Deep Learning) 알고리즘이다.




                         “A fast learning algorithm for deep belief nets, Neural Computation,” Geoffrey
                       E. Hinton and Simon Osindero, 2006.
                         “Fast Inference in Sparse Coding Algorithms with Applications to Ob ect Recognition,”
                       Computational and Biological Learning Lab, Courant Institute, Koray Kavukcuoglu,
                       Marc’Aurelio Ran ato, and  ann LeCun, 2008.
                         “Pedestrian Detection with Unsupervised Multi-Stage Feature Learning,” in Proc.
                       International Conference on Computer Vision and Pattern Recognition (CVPR’13), P.
                       Sermanet, K. Kavukcuoglu, S. Chintala,  . LeCun, 2013.


                                                                                 193
   190   191   192   193   194   195   196   197   198   199   200