Page 4 - logaritmos
P. 4

Propiedades de la función exponencial


               Dominio: ℛ

               Recorrido: ℛ


               Es continua

               Los puntos (0,1) y (1,   ) pertenecen a la gráfica


               Es inyectiva ∀     ≠  1(ninguna imagen tiene más de un original).


               Creciente si a > 1

               Decreciente si a < 1


               Las curvas     =                =  (  /  )     son simétricas respecto del eje OY







               GRAFICAS DE LAS FUNCIONES EXPONENCIALES


               Para poder comprender de mejor manera realizaremos un ejemplo:

               Ejemplo: grafique la siguiente función   (  ) =  2(1 −   ) y determine su dominio

               y rango.

               El hecho de que la variable en la función se encuentre como potencia, nos confirma

               que esta función es exponencial.


               La función puede ser reescrita de la siguiente forma:

                 (  ) =  2 − (   − 1)


               Recordando la propiedad de potencia a-1 = 1/a, entonces:

                 (  ) =  1/2(   − 1)


               Observamos que la base de esta función exponencial es menor

               que uno, por lo tanto, su gráfico es decreciente.


               Pero para poder graficarla debemos saber en qué punto corta


               al eje y, para ello sustituiremos el valor     =  0 en la función:

                 (  ) =  1/2(0 − 1)


                 (  ) =  1/2 − 1
   1   2   3   4   5   6   7   8   9