Page 174 - D:\Project buku\
P. 174
boomtown. The Serials Librarian, 67(4),363–372. https://doi.
org/10.1080/0361526x.2014.915605
Salman, M. (2024). Technology, organization and environment
as strategic factors of big data analytics readiness
and acquisition intention to adopt big data analytics in
malaysian libraries. Environment- Behaviour Proceedings
Journal, 9(SI18), 233–246. https://doi.org/10.21834/e-bpj.
v9isi18.5489
Shi, Y., & Zhu, Y. (2015). Library and university data analysis using
data detection. https://doi.org/10.2991/icmii-15.2015.61
Shi, Y., Zhu, Y., Su, J., Zhu, L., & Chen, L. (2016). Academic libraries
data analysis using data mining. https://doi.org/10.2991/
nceece-15.2016.82
Shieh, J. (2010). The integration system for librarians’ bibliomining.
The Electronic Library, 28(5), 709– 721. https://doi.
org/10.1108/02640471011081988
Siguenza-Guzmán, L., Saquicela, V., Avila-Ordóñez, E., Vandewalle,
J., & Cattrysse, D. (2015). Literature review of data mining
applications in academic libraries. The Journal of Academic
Librarianship, 41(4), 499–510. https://doi.org/10.1016/j.
acalib.2015.06.007
Tang, K. (2013). Research on the construction of personalized
active information service model in digital library. Advanced
Materials Research, 753–755, 3071–3074. https://doi.
org/10.4028/www.scientifi c.net/amr.753-755.3071
Travis, T., & Ramirez, C. (2020). Big data and academic libraries:
the quest for informed decision-making. Portal Libraries
and the Academy, 20(1), 33–47. https://doi.org/10.1353/
pla.2020.0003
165