Page 2 - mathematics
P. 2

The Limit of a Function                     Basic Properties and Rules for Limits

                                                                 lim f x   L                                       lim g x   M

                                                                 x a                                                 x a

Definition                                       lim   f   x         g  x            lim   f      x      lim     g    x    L     M

         limf x   L                           x a                                          x a                       x a

                     x a                        lim   c   f   x        c  lim       f     x   c L

The limit of f x  as x approaches a, equal L   x a                             x a

                                                 lim   f   x         g  x            lim     f     x       lim     g   x         L    M

                                                 x a                                          x a                         x a

                                                 lim     f  x          lim   f    x        L       ,  if     lim     g  x       0
                                                         g  x                                     M
                                                 x a                     x a                                         x a
                                                                    
     x a                              f x L                            lim     g    x

                                                                            x a

                                                  lim                                                            n  Ln

                                                 x a
                                                       f   x  n            lim       f     x 

                                                                                  x a

Example                                          Example                                                                        x  9  3 2

Evaluate the following limit  lim      x2  9    Evaluate the following limit                                     lim                 x             
                                       x3  27                                                                                                      
                              x3                                                                                 x 0 

Solution                                         Solution

lim  x2  9     0                               lim            x     9        3    2         lim        x  9  32                   0                 * x9 3
     x3  27     0                                                     x                                                                  0                     x9 3
x3                                              x0                                             x0               x               
                                                                                                                                
                             x  3x  3
                 lim          3 x 2  3x  9
                      x                                  x  9  3  lim x  9  9                                      lim                 1             1
                 x 3                                                                                                                              9             6
                                                                x x 0 x x  9  3                                            x 0
                                                  lim                                                                                      x           3
                           x  3
                                                 x 0
                          x2  3x  9
                lim                                                     lim               x    9       32                1   2      1
                x3                                                                                x                           6          36
                                                                            x 0                               
                6
                 27

                                                          1
   1   2   3   4   5   6   7