Page 3 - mathematics
P. 3

One-Sided Limit                                                     Theorem

Left-hand Limit                lim f  x  M                          If f is defined on an open interval containing a (may be except a
                                                                       itself) and L is a real number, then
                               xa
                                                                                   lim f  x  L
means that, f(x) approaches M as x approaches a through the
                                                                                                  xa
values less than a, that is as x approaches a from left (x < a).

Right-hand Limit lim f  x  N                                        if and only both the left-hand limit and right-hand limit of f at a
                                              xa                     exist and equal L.

means that, f(x) approaches N as x approaches a through the                         lim f  x  lim f  x  L
                                                                                 xa              xa
values greater than a, that is as x approaches a from right (x > a).

Example                                                                lim f  x   lim 1 1                      1    if       x 0
                                                                       x 0              x 0                          if     0x 2
                                                                                                   f     x        x  if
Find the following limits, if it exists,                               lim f x   lim x  0                                    x 2
                                                                                                                    2
i) lim f  x           ii) lim f  x            iii) lim f  x      x 0              x 0
   x1                      x0                        x2
                                                 y
                        x 0                                            lim f x   lim f x   lim f x                 Does not exist
                      0x 2                         2                 x 0              x 0    x 0
         1       if
                  if    x 2                         1                 lim f  x   lim x  2
f  x   x     if
                                                                       x 2              x 2
          2                                                       x

                                          2 1  12  34 5              lim f  x   lim 2  2

Solution                                                               x 2              x 2

lim f  x   lim 1  1                                                 lim f  x   lim f  x   2  lim f x   2
x 1                 x 1
                                                                       x 2              x 2          x 2

Example                                                                Example
                                                                       Prove that lim x Doesn’t exist.
               2x  1         1 x 3
                              3 x5                                               xx 0
f  x          x2    2     5 x7
                                                                       Solution
                5x

discuss the following limits:                                                 x     if  x0                      x     1    if  x0
                                                                               x  if  x0                      x     1  if  x0
lim f x =3                   lim f x             =7                x                          f x             
                                                     =7
x1                           x3

lim f x                =23   lim f x =35                           lim       x     lim 1  1       lim x       lim 1  1
                         =25                                                     x                      x 0 x
x5                            x7                                    x 0             x 0                        x 0

                                                                              2
   1   2   3   4   5   6   7   8