Page 8 - mathematics
P. 8

Graph of y  cot x                                                               Graph of y  csc x y

                                                  y

                                                                              x                                                    1                            x
                                                                                                                                       / 2  3 / 2 2
          3 / 2   / 2                           / 2  3 / 2              2 3 / 2   / 2

                                                                                                                                 1

Domain:  R  zeros of sin x                             Range: R              Domain: R- zeros of sin x

Symmetry : Odd function cot  x   cot x                                    Range: R- [-1,1]

                                                                                 Symmetry : odd function                              csc x   csc x 

Zeros:  zeros of cos x Periodic with period = π                                 No Zeros             Periodic with period= 2π

Graph of y  sec x y                                                                          Some Trigonometric Identities

                                               1                                 cscx       1  x  ,  sec   x      1                 x  ,     cot   x      1     x
                                                                                           sin                    cos                                      tan
2 3 / 2   / 2
                                                                           x     sin2 x  cos2x 1                                    sin 2x  2sin x cos x
                                             1    / 2  3 / 2 2                                                                   cos 2x  c os2x  sin2 x
                                                                                 sec2x  1 tan2 x
Domain: R- zeros of cosx                                                         csc2x 1cot2 x                                                  2cos2 x 1

                                                                                                                                                  1 2sin2 x

Range: R- (-1,1)                                                                                                                      sin2 x      1  1  cos  2x  
                                                                                                                                                  2
Symmetry: even function                           sec x   sec x                                                                          

No Zeros          Periodic with period= 2π                                                                                            cos2  x    1  1  cos  2x  
                                                                                                                                                  2

          2- Exponential Functions                                                                    Theorem

The exponential function is a function of the form                                            1                                        a p / q  q a p  q a p
                                                                                              an
          f x  ax                              a>0,a≠1                        an       

In the definition of an exponential function, a , the base, is                                                                           ax
required to be positive.                                                                                                                 ay

f x  ax , a 1                                    f x   ax , 0  a 1      axay  ax y                                                      a x y

         y                                                        y

                 1                                                      1     x   ax y  a x y                                      ab x  a x b x

                           x                         Range: (0,)

Domain: R  (, )

                                                                                 8
   3   4   5   6   7   8   9   10   11   12   13