Page 9 - mathematics
P. 9

The Natural Exponential Function                                                             Basic Properties of Natural Exponential Function

The value of e accurate to eight places is 2.71828183.                                              ex e y exy                         e x /e y  e x y
                                                                                                    1/e x  e x
        y  ex                  y     y ex                                                                                              e x n  e n x

                                 1                                                                  e0  1                                    e1  e
                                                                                                    e   0
                                                   x                                                                                         e 

Domaim : R                             Rnge : (0, )

                 3- Hyperbolic Functions                                                                      tanh x       sinh x         ex        e x
                                                                                                                            cosh x        ex        e x
The hyperbolic functions are some combinations of e x and
e x arise so frequently in mathematics and its applications.

cosh x          ex   e x            sinh x                                  ex  e x                      coth x       cosh x          e   x   e x
                     2                                                            2                                        sinh x           e   x  e x

                                                                          y

                 y

                                                                                                              sech x          1      x   ex       2
                                                                                                                            cosh                    e x
           1                                                                       x
                       x
                                                                                                              csch x             1       ex           2
                                                                                                                               sinh   x                 e x

                 Basic identities                                                                   Example
cosh2 x  sinh2 x  1
                                                                                                    Prove that cosh2 x  sinh2 x  1

cosh2x cosh2 x  sinh2 x                                                                         Solution

                                                                                                                           ex         ex  2        e  x  e x  2
                                                                                                                                    2                     2      
                                                                                                    cosh 2 x   sinh2 x                                             
                                                                                                                           
                 1                                                           1                                                               
                 2                                                           2
cosh 2  x          cosh    2x   1  sinh2  x                                cosh  2  x    1                       e 2x     2  e 2x         e2x   2  e2x 
                                                                                                                                     4                             4
                                                                                                                      

tanh2     x      1  2  tanh   x                                                                                      1    4    1
                         tanh   2x                                                                                      4

                                                                                                    9
   4   5   6   7   8   9   10   11   12   13   14