Page 11 - mathematics
P. 11

Inverse of Transcendental Functions

                                                       1- Inverse of Trigonometric Functions
                                                       2- Inverse of Exponential Functions
                                                       3- Inverse of Hyperbolic Functions

                                                       Graph of y  sin x y                                                                                                                                                   y

                                                                                                                                 1                                                                                        1

 1- Inverse of Trigonometric Functions                                                                                                     2  3 / 2    / 2                                                                /2      3 /2       x
                                                                                                                                                                                                                                                   2
Since the trigonometric functions are not one-to-one,                                                                                                                                                                1
so they don’t have inverse functions. However, if we
restrict their domains, then we may obtain one-to-                                                                                                                                                                               x
one functions that have the same values as the
trigonometric functions and that have inverse over                   / 2                                                           /2
these restricted domains.
                                                       y  sin1 x               1
For example, the function y  sin x is not one –to-
one on its natural domain R. However, when the                                    y
domain is restricted to the interval –π/2 to π/2, it
becomes one-to-one.                                                          /2

                                                                                                                                                                                                                                 x

                                                                    1 1

                                                                             / 2

                                                       Graph of y  cos x y                                                                      y

                                                                                                                                             1

           Important Rules                                                                                                                 2 3 / 2   / 2                                                                  / 2  3 / 2 2         x

* y  sin1 x  sin y  x                                                                                                                                                                                             1

                                                                            1

                                                                                                                                                                                                                                         x

                                                                                    /2                                                   

 * sin sin1 x  x , if 1  x 1                                         1

                                                     y  cos1 x           y
                               2           2                                 
*  sin1 sin x   x , if         x                                      /2

                                                                    1 1                                                                                                                                                                 x

                                                       11
   6   7   8   9   10   11   12   13   14   15   16