Page 16 - mathematics
P. 16

Rules of Differentiation:                                                     f g   f g  g f 

d   c f      x          c  d      f   x                                               d
dx                              dx
                                                                                              dx
                                                                                                     2x      3  x3x      2         
                                                                                                                                        

                                        d    3x 2   32x   6x                                   2x  3 3x 2 1  x 3  x  2 2
                                                                                   
                                       dx                                      f         f  g  gf
                                                                               g
f  g   f   g                                                                         g 2

                                                                                      d
                                                                                    dx
                                    d                                                    x    1          x4 x        1  x 1 4x 3 1
                                                                                         x4    x     
                                   dx                                                                                         x4 x 2
                                               x 3  6x  5    3x 2  6

                    Tables of Differentiation                                            Table (2)                                  Table (3)

Table (1)                      f x                f x                      Trigonometric Functions                     Hyperbolic Functions

                             k (constant)              0                           f x          f x                    f x            f x 

                                 kx                    k                            sinx           cos x                    sinhx             cosh x
                                 xn                  nx n 1                       cos x                                                      sinh x
                                                                                   tan x         - sin x                    cosh x            sec h 2x
                                  x                     1                                                                   tanh x
                                 ex                   2x                           cot x           sec2 x                                  - csc h 2x
                                 ax                                                secx                                     coth x         - sechx tanhx
                                                     ex                                          - csc2 x                   sechx          - cschx cothx
                                 ln x                                              csc x                                    cschx
                                                    ax ln a                                       secx tanx

                                                       1                                         - cscx cot x
                                                       x

Example                                                                      Example:

Differentiate the functions:                                                 Obtain the derivative of tan x from sin x and cos x.

 a) y  x 3  sin x                                                          Solution:

     y   3x 2  cos x

b ) y  x cosh x                                           1                 d      tan x        d      sin x    
                                                         2x                  dx                     dx    cos x    
  y   x  sinh x   cosh x

              x 3  cos x                                                                          cos x      cos x  sin x   sin x     
               sin x                                                                                                cos2 x
c)y 

 y         3     1/ 2                                                                           cos2 x  sin2        x        1
            2  x         sin x    sin  x   cos x    x 3 / 2  cos x                             cos2 x               cos2      sec2 x

                                          sin2 x                                                                                   x

                                                                                   16
   11   12   13   14   15   16   17   18   19   20   21