Page 21 - mathematics
P. 21

Logarithmic Differentiation                                                 Case (1)

 * Logarithmic differentiation is a procedure in which          Differentiating complicated product and quotient functions:
logarithms are used to convert the task of differentiating
products and quotients for that differentiating sums and        y     f  gh                   ln       y    ln  f  gh           
differences. It is especially valuable as a means for handling            lm                                              lm
complicated product or quotient functions and exponential
functions where variables appear in both the base and the       ln y  ln f  ln g  ln h  ln l  ln m
exponent.
                                                                Now: differentiating simple sums and differences.
 Main Steps in logarithmic Differentiation:

 (i) Take logarithms of both sides of a given equation
 (ii) Use the laws of Logarithms to simplify.

 (iii) Differentiate implicitly with respect to x.

  (iv) Solve the resulting equation for y'.

                                  Example                                            Example

      dy                                                                                x 2  1 e5 sin x
      dx                                                                       if y  tan1 x ln x
Find           if     y  x3 e2x cos(3x)                         Find   dy
                                                                          dx
                             Solution
                                                                                     Solution
We first take the logarithm of both sides:

ln  y   ln x 3 e 2x cos3 (3x )                         We first take the logarithm of both sides:

      ln y  ln x3  ln e2x  ln cos3 3x                  ln y  ln x 2 1 5  ln e sin x  ln tan1 x  ln ln x 
                                                                   ln y  5ln x 2 1  sin x  ln tan1 x  ln ln x 
 ln y   3ln x  2 x  3ln cos3x

Next, differentiate both sides with respect to x:                y 51      2x   cos x       1      1     2      1         1
                                                                      x 2 1                    tan1 x    1 x         ln x        x
y          3      2     3     1           3 sin 3 x         y
y          x                                                Next, differentiate both sides with respect to x:
                            cos 3 x 
                                                                                                                                      
                     3              sin 3x                     5    1            cos x        1       1              1       1  
                     x              cos 3x                          x 2 1                    tan 1       1 x         ln x     x  
      y      y          2    9                            y   y     2x                     x          2           
                                                 
                                                                                                                                       

                                                                   21
   16   17   18   19   20   21   22   23   24   25   26