Page 22 - mathematics
P. 22

Case (2)                                                                                        Example

Differentiating exponential functions where variables                                   Find      dy    ,  where           y        x   ln  x
                                                                                                  dx
appear in both the base and exponent:
                                                                                                                           Solution
y fg                                           ln y  ln f g 
                                                                                     We first take the logarithm of both sides:

             ln y  g  ln f                                                             ln y  ln x ln x                                         ln y  ln x ln x

                                                                                                                                                    ln y  ln x  2

                                                                                        Next, differentiate both sides with respect to x:

Now: differentiating simple product.                                                    y      2  ln    x          1                           y         2   y  ln     x      1
                                                                                        y                               x                                                               x

                           Example                                                                                         Example

 Find   dy                                             cosh x                                            dy                            y x  tan1 xe sinx 3
          dx    , where y  sin 1                    x                                       Find         dx     ,     where

                      Solution                                                                                             Solution

We first take the logarithm of both sides:                                                 x ln y  ln tan1 x  sin x 3

   ln y  ln sin1 x cosh x                                                          xy                      1                       1                                       3x 2
                                                                                        y       ln  y         tan1                 1 x                    cos x 3
  ln y  cosh x  ln sin1 x

Next, differentiate both sides with respect to x:                                                                                 x                          2

y                1                1        
               sin 1                      
 y                                        
 cosh x               x                2       sinh  x   ln  sin1 x                     y    1                              1                                                       
                                                                                              x    tan1 x                   x                                                      
                                 1     x                                                  y
cosh x                                                                                                                            2               cos x 3      3x 2            ln  y
                      1               1                                                                                      1
 y   y           sin 1           1x 2                                    
                            x                        sinh  x   ln  sin1 x

                                                   

                                                                                                           Taylor Series

                                                                                     * This section shows how functions that are infinitely
                                                                                     differentiable generate power series called Taylor series.

                                                                                     Taylor series generated by f at x = a is:

                                                                                     f  x f   a  f   a        x  a f       a      x   a2  f       a   x    a 3  ....

                                                                                                           1!                           2!                             3!

                                                                                     Maclaurin series generated by f is:

                                                                                              f  x  f      0  f      0      x    f   0       x  2     f  0  x 3  ....
                                                                                                                                        
                                                                                                                           1!                 2!                       3!

                                                                                        which is the Taylor series generated by f at x = 0.

                                                                                              22
   17   18   19   20   21   22   23   24   25   26   27