Page 25 - mathematics
P. 25

Case (1)                                                                        Case (1)

Example          Evaluate               lim    1  cos   2x                     Example             Evaluate              lim          x2    
                                                   x2                                                                                        
Solution                                x 0                                    Solution                                  x        e x 2  

lim   1    cos  2  x       0                                                               x2            
            x2               0                                                                              
x 0                                                                                lim     e x 2    

L’Hopital        lim 2sin2x                                sin 2x               x                
                                                                 x
                x 0 2x                             lim                   0      L’Hopital        lim            2x              lim          1     1 0
                                                                             0                                     2x ex 2                        ex 2    
                                                      x 0                                            x                              x 

                                 L’Hopital           lim   2  cos  2  x  2
                                                                 1
                                                      x 0

                             Case (2)                                                                        Case (2)

Example Evaluate lim csc x  cot x                                            Example Evaluate lim x cot x
                                  x 0
                                                                                                                   x 0
Solution
                                                                                Solution

lim csc x  cot x                                                         lim x cot x  0  
                                                                                x 0
x 0

 lim    1              cos x          lim        1 cos x                                          lim        x            
          sin x         sin x                      sin x                                                       tan x      
  x 0                                     x 0                                                           x 0

L’Hopital             lim             sin x       0    0                          L’Hopital          lim        1                   1
                                      cos x       1                                                               sec2 x          
                       x 0                                                                               x 0

                             Case (2)                                                                        Case (3)

Example Evaluate lim x e x                                                     Example             Evaluate          lim          1    1   x   1
                                                                                                                                        x   
                                   x                                                                                x 

Solution                                                                        Solution

lim   x  e  x            0                                                      L    lim      1    1  x
                                                                                                        x  
x                           x                                                           x 
                             ex
                   lim                                                         ln  L    lim      x  ln 1       1   
                                                                                                                     x   
                    x                                                                   x 

L’Hopital                        1       1 0                                                  
                                ex        
                   lim                                                                                ln  1   1  
                                                                                                                   x  
                    x                                                         ln L  lim

                                                                                          x             1/ x

                                                                                       25
   20   21   22   23   24   25   26   27   28   29   30