Page 30 - mathematics
P. 30

Determinant of a matrix                                                                   Example

(1) Determinant of 2  2 Matrix):                                              Find A of the following matrices:

                       If  A     a11     a21                                i    A      4   3                    1 2 2
                                  a12    a22                                               2  1 
                                                                                                                ii  A  2 5 1
      Then det A  A  a11a22  a21a12
                                                                                                                           4 5 3

(2) Determinant of 3  3 Matrix):                                              Solution       i   A       4    3    (4)(1)    (3)(2)    2
                                                                                                             2     1
                                  a11 a21 a31 
                     If A  a12                       
                                           a22     a32                                    1  2     2          5  1          2   1           2    5
                                                                                              5     1          5  3          4   3           4    5
                                  a13 a23 a33                              ii  A  2    5     3    (1)           (2)            (2)

Then       A     a11  a22    a23     a21  a21    a23         a13  a21  a22              4
                       a32    a33           a31    a33               a31  a32
                                                                                                           10  (2) 2  (2) 10  14

                  Inverse of a matrix A 1                                                     Example

                           a11 a12  a1n                                     Find A 1 of the following matrix:
                           a21                                                                     1 2 2
           If     A               a22          a2n       ,
                                                                                              A  2 5 1
                                                                                                     4 5 3

                           an1     an 2         ann                                           Solution
                                                           
                                                                                                       1 2 2
           Then            A 1     1     adj  A                                              A  2 5 1  14
                                     A
                                                                                                       4 5 3
where:

adj A   adj aij   Aij T

Aij is the cofactor of each element.

                  10          2         10 T                           Solution of linear system of equations
                                  5                                                by using Inverse matrix method
adj    A         4           3          3    
                                                                               * We will solve Linear system of equations which take
                   8                        1                        the following form:

                 10 4 8                                                             a11x 1  a12x 2   a1n x n  b1
                                                                                        a21x 1  a22x 2   a2n x n  b2
                  2       5 3                                                      
                 
                 10 3 1                                                            an1x 1  an2x 2   ann x n  bn
                                                                                 to get the values of the unknowns x 1, x 2,, x n .
               1    10      4     8
               14             5      3
A    1              2      3      1 
                    
                    10

                                                                                   30
   25   26   27   28   29   30   31