Page 30 - mathematics
P. 30
Determinant of a matrix Example
(1) Determinant of 2 2 Matrix): Find A of the following matrices:
If A a11 a21 i A 4 3 1 2 2
a12 a22 2 1
ii A 2 5 1
Then det A A a11a22 a21a12
4 5 3
(2) Determinant of 3 3 Matrix): Solution i A 4 3 (4)(1) (3)(2) 2
2 1
a11 a21 a31
If A a12
a22 a32 1 2 2 5 1 2 1 2 5
5 1 5 3 4 3 4 5
a13 a23 a33 ii A 2 5 3 (1) (2) (2)
Then A a11 a22 a23 a21 a21 a23 a13 a21 a22 4
a32 a33 a31 a33 a31 a32
10 (2) 2 (2) 10 14
Inverse of a matrix A 1 Example
a11 a12 a1n Find A 1 of the following matrix:
a21 1 2 2
If A a22 a2n ,
A 2 5 1
4 5 3
an1 an 2 ann Solution
1 2 2
Then A 1 1 adj A A 2 5 1 14
A
4 5 3
where:
adj A adj aij Aij T
Aij is the cofactor of each element.
10 2 10 T Solution of linear system of equations
5 by using Inverse matrix method
adj A 4 3 3
* We will solve Linear system of equations which take
8 1 the following form:
10 4 8 a11x 1 a12x 2 a1n x n b1
a21x 1 a22x 2 a2n x n b2
2 5 3
10 3 1 an1x 1 an2x 2 ann x n bn
to get the values of the unknowns x 1, x 2,, x n .
1 10 4 8
14 5 3
A 1 2 3 1
10
30