Page 31 - mathematics
P. 31

* We can write the previous system of equations in the                                                 Example
general form as:
                                                                                    Solve the following linear system of equations using
                      AX  B                                                       inverse matrix method:

 where:                                                                                                 x1  2x 2  2x 3  4
                                                                                                       2x1  5x 2  x 3  7
      a11 a12  a1n                                x1                 b1                         4x1  5x 2  3x 3  5
      a21                                                            b2  
A            a22                a2n    ,  X      x2      ,  B        
                                                                         
                                                                                                    Solution
      an1     an 2               ann             x   n             bn  
                                                                              

* To solve this system, multiply both sides by A 1 we get:                             1 2 2              1   10   4  8
                                                                                   A  2 5 1             14        5   3
                   A 1A X  A 1B                                                                  A  1          2   3   1 
                          X  A 1B                                                     4 5 3
                                                                                                                  10

                   X  A 1B

             x    1        1   10          4       8  4
                  2        14                5
               x  3             2          3        3       7  
                                                                   
              x                10                  1  5

                            1   40       28      40
                             14  8      35      15
                                 40      21      5 

                             1   28            2
                             14  42                 
                                                 3  

                                 56            4 

                                                                                   31
   26   27   28   29   30   31