Page 29 - mathematics
P. 29

Transpose of a matrix:                        Example

                                                 A    1      0   2   ,  B    2      1     1   ,          5
                                                       3     2   1           2     0     3        C  0

                                                                                                               3

                                                                           Solution

       a11 a21  am1                               1     3                                                T  1   1
       a12                                 AT  0      2 ,                                                    1
AT              a22        am2                         1    A    BT       1        1         1           1  2      ,
                                                     2                             1       2          2                    
       a1n                                                                   
                                          
                   a2n        amn                                                                                        2

                                                                   CT  5 0 3.

Properties of transpose of a matrix:                               Special Matrices
(AT )T  A
                                              1) Zero matrix 0:                0 0                  0            0    0
(A  B)T  AT  BT                                                         0  0 0  0           0           0   0
(AB)T  BT AT                                                                                          0     0  
                                                                               0 0
( A)T   AT
                                              A  0  A, A  (A)  0
(A  B  C)T  AT  BT  CT
                                              2) Triangular matrix:
(ABC)T  CT BT AT
                                                    1 2 3 4                            -2 0 0 0

                                              U    0     5  6   7           L        1  6       0  0
                                                    0      0  8   9                      8  9       3  0
                                                                                         

                                                    0 0 0 1                            4  2       1  5
                                                                                         

                                              upper triangular matrix            lower triangular matrix

3) Diagonal matrix:                           6) Symmetric matrix:
                             7 0 0
                   D  0     0
                            1                       AT  A;                     1 2 7
                            2                                              A  2 5 6
                   0 0 1
                                                                                7 6 4
4) Scalar matrix:

                   5 0                      7) Skew symmetric:
                   0 5
                                                                                  0 1 1
5) Identity matrix:                                 AT  A;
                               1 0 0                                     A  1 0               2  
                                                                                                       
                           I  0 1 0                                          1 2 0 
                               0 0 1

                                                    29
   24   25   26   27   28   29   30   31