Page 28 - mathematics
P. 28

Example                                                             Properties of matrix addition and scalar
                                                                                                       Multiplication:
           9 1 3                          4 7 8                                                  ABBA
                                                                                                       A  (B  C)  (A  B)  C
If  A      2       4 2 , B  9                  3          5    ,  Find           3A-5B.
                                                                                                     (12 )A  1(2A)
          7 1 5                        1 1 2 
                                                                                                       1A  A
                                       Solution                                                        1(A  B)  1A  1B

              27 3             9  20                                                 35   40    (1  2)A  1A  2A
                                                                                          15   25
C    3A      6    12         6       ,     D       5B             45                  10
                                                                                        5
             21 3            15                                    5

                                                 7 32 31 

       3A  5B  C  D  39 3 31
                              26 8 25

                     Matrix Multiplication                                                                                      Example

                                                                                                       Find the product of the following matrices:

              a11   a12              a1    p       b11   b12  b1n                                       A      4    7       Β    9   2
                    a22              a2    p       b21                                                            3   5            6  8 
               a21                                        b22             b2n     
      AB          am2                                                             
                                                                               
                                                  bp1                                                                     Solution
             am1                     amp                bp2              b pn    

              a11b11  ...  a1pbp1                        a11b1n  ...  a1pbpn                           4 9     7  6   4  (2)      7 8       78   48
                                                                                                    AB     3 9    5  6   3  (2)      5  8  =  57  34
               a21b11    ...    a2  pbp1                  a21b1n          ...    a2  pbpn            
                                                     
                                                                                             
                                                                                                
             am1b11  ...  ampbp1                         am1b1n  ...  ampbpn 

                                Example                                                                Remarks:

Find the product of the following matrices:                                                            Am pB pn  Cmn
                                                                                                        BA  AB
                  5       8             B           4        3                                   A(BC) = (AB)C
             A  1       0                          2       0                                   A(B + C) = A B + A C
                           7                                                                          (B + C)A = BA + CA
                  2

                                   Solution

       5  (4)  8  2               5  (3)  0 8 4                               15
AB  1 (4)  0  2                                                        4                 
                                       1 (3)             0    0                     3       
       2  (4)  7  2                                            
                                       2  (3)  0  7  6                            6 

                                                                                                       28
   23   24   25   26   27   28   29   30   31