Page 24 - mathematics
P. 24

L’Hopital’s Rule                           Theorem (L'Hopital):

Indeterminate forms:                                         f x0 gx0 0

                    0 ,                                  The functions f and g are both differentiable on an open
                    0                                    interval (a,b) that contains the point xo

            0   ,   ,                              g   0 at every point in (a,b) except possibly xo

           00 ,0 , 1                               Then:

 are called indeterminate forms. These quantities may              lim       f  x       lim    f    x  
 appear when evaluating limits of functions                                  g  x               g    x  
                                                                  x x 0                  x x 0

                 Case (1)                                                    Case (1)

Example    Evaluate    lim          sin  x                 Example Evaluate lim sin x
                                      x                                            x  x  
                       x 0
                                                           Solution
Solution

lim sin x    0                                            lim sin x     0
x 0 x        0                                            x  x       0

L’Hopital             sin  x                cos  x  1  L’Hopital      lim       cos x   1
                                                 1                                    1
             lim      x             lim                             x 

              x 0                       x 0

                                                           24
   19   20   21   22   23   24   25   26   27   28   29