Page 18 - mathematics
P. 18

Table (4)                                                      Example

              Inverse Trigonometric & Hyperbolic                  * Differentiate the functions:
                                Functions

cot1 x        tan1 x         tanh1 x        co-th1 1 x         a) y  sin1 x 2                      y '  1 2x 
  1 tan
                   1                1            x 2 1                                                        1 x 2 2
1 x 2          1 x 2           1x 2
                                              cosh1 x             b ) y  csc1 sinx y '  1 cosx 
cos1 x       sin 1 x         sinh 1 x                       1
                                                   1                                            sinx  sinx 2 1
                   1                 1                         1
  1 sin                                         x 2 1     x     c)  y         sin1      ex   4
                 1 x 2           1 x 2                              y'                   ex  3
1 x 2                                         cs-c1h1 x                                         
              sec1 x           se-ch1 1 x
csc1   xsec                                   x 1 x 2                       4      sin1                 1    1 e x
                   1             x 1 x 2                                                                1ex
    1                                                                                                             2 ex
              x x 2 1
x x 2 1

                           Example                                             Implicit Differentiation

* Differentiate the function:                                     * If x can be expressed in the form y = f(x), then we say
                                                                  that x is an explicit function of y. In some cases there
y       sinh1    e  sin  1  x                                 are a relation of x and y which can not be expressed in
                                                                the above form. These relations are called implicit
                                                                 functions.

                                                                Steps of Implicit Differentiation:

                 1                                                * Differentiate both sides of the equation with respect
          1  e sin1 x
   y '                                                         to x. Remember that y is a function of x.
                                  e sin1 x
                                                                  * Solve the differentiated equation for dy/dx in terms
                               2
                                                                    of x and y.
    1 1

      1 x 2 2 x

                                                                          18
   13   14   15   16   17   18   19   20   21   22   23