Page 13 - mathematics
P. 13

Proof csc1 x  sin1 1/ x                                      2- Inverse Exponential Functions

         y  csc1 x              1         1  y   sin y        Every exponential function of the form ax is a one-to-one
                                  x        csc
         x  csc y                                                function. It therefore has an inverse function, which is called the

                                                                  logarithmic function with base a and is denoted by loga x .

                                                                                                    y ax

                                                                                                    1 loga x

                                                                                                                 x

                                                                                                                                      1

                          sin1 1/ x   sin1 sin y           Domain: (0,)                    Range: R  (,)
                          y  csc1 x  sin11/ x

        The Natural Logarithmic Function                          Basic Properties of Natural Logarithmic Function

   The logarithm with base e is called the natural logarithm and  ln ex  x                        eln x  x

   has a special notation loge x  ln x                           lnx y  ln x  ln y         lnx / y  ln x  ln y

                            y y ex

                          1                          y lnx            ln x r  r ln x

                                     1             x

                                                                  ln 0                         ln   

      Domaim : (0,)                            Rnge : R

   Example                                                            3- Inverse Hyperbolic Functions

   Solve the following equations for x:                           The hyperbolic functions sinh x is one-to-one functions
                                                                  and so they have inverse functions denoted by sinh1 x
   a ) e 53x  10                          b ) ln x 2 1  5
                                                                    1) sinh1 x  ln x  x 2 1 ,    x  
   Solution                              e ln x 2 1  e 5
                                           x 2 1  e 5
 ln e53x  ln10                                               2) cosh1 x  ln x  x 2 1 , x 1
                                           x 2 e5 1
   5  3x  ln 10
                                        x  e 5  1  12.141382.
x    1  5    ln10    0.8991                                  3) tanh1 x  ln       1  x  ,  1 x 1
      3                                                                                  1  x

                                                                  13
   8   9   10   11   12   13   14   15   16   17   18