Page 15 - mathematics
P. 15

* Definition of Derivative:                                           Important theorems:

The first derivative of the function y  f  x  with                 1. If y = f(x) is differentiable at x = a, then y = f(x) is
respect to the variable x is the function f  whose value                continuous at a . The inverse is not always true.

at x is:                                                              2. If the function y = f(x) is discontinuous at the point
                                                                        x = a, then it is not differentiable at this point.
f  x      y      dy   lim    f  x    hf  x 
                       dx     h 0
                                                h

provided the limit exists.

Geometric Interpretation of Derivative:                               * we can write the equation of the tangent line to the
                                                                        curve at the point (a, f(a)):
* The slope of tangent line to the graph of the function
  f(x) at (a,f(a)) is the derivative of f(x) at x = a.                          y  f a  f a x  a
                 y
                                       y  f x                      Example

                    . P  f ah f a                           Find an equation of the tangent line to the curve
                             h
                                                                       y  x2  8x  9 at the point (3,- 6).

                                                                      Solution

                    a ah              x                              y  2x  8  y 3  23  8  2

                            f  a   lim       f  a  h  f  a                          y  2x
                                           h 0
                                                          h           y   6  2 x  3

                                       = Slope of tangent at P

                                                                      15
   10   11   12   13   14   15   16   17   18   19   20