Page 12 - Formula-All
P. 12

B. Tech. Semester-I (All Branch)                                                       Important Formulas

        (D) Standard Results for fixed arrangement:

             Z    0
                 f (x)
        (1)             dx = log |f(x)| + c
                 f(x)


             Z                         [f(x)] n+1
                           0
                        n
        (2)      [f(x)] f (x) dx =                 + c
                                          n + 1


             Z
                  x
                               0
                                              x
        (3)      e [f(x) + f (x)] dx = e f(x) + c


             Z                        e ax
        (4)      e ax  sin bx dx =            [a sin bx − b cos bx] + c
                                     2
                                    a + b  2


             Z                          ax
                                       e
        (5)      e ax  cos bx dx =            [a cos bx + b sin bx] + c
                                      2
                                    a + b   2

        (E) Integration and Differentiation together(Leibnitz’s Rule):
                          Z
                                                                00
                                                                          000
                                                     0
                             u · v dx = u · v − u · v + u · v − u · v + · · · · · · · · ·
                                                         2
                                                                                3
                                                                    3
                                               1
        (F) Definite Integration rules
               b
             Z
                                     b
        (1)      f(x) dx = [F(x)] = F(b) − F(a)
                                     a
             a
               b                  a
             Z                  Z
        (2)      f(x) dx = −        f(x) dx

             a                   b

               b               c               c
             Z               Z                Z
        (3)      f(x) dx +       f(x) dx =       f(x) dx

             a                b               a

                              
               a              0,                if f(x) is odd
             Z
                              
        (4)      f(x) dx =         a
                                  R
                              2 f(x) dx, if f(x) is even
                              
             −a
                                  0
               a               a                        2a               a               a
             Z                Z                        Z                Z               Z
        (5)      f(x) dx =       f(a − x) dx (6)          f(x) dx =        f(x) dx +       f(2a − x) dx

              0               0                        0                0               0



        Mr. Snehal D. Patel (Assistant Professor - Mathematics)                                        Page 9 of 9
   7   8   9   10   11   12