Page 251 - Corporate Finance PDF Final new link
P. 251

BRILLIANT’S                       Dividend Decision                               251


                  Dividend Capitalization Model               {S>{dS>oÝS> H¡${nQcmBOoeZ _m°S>c
                      According to Gordon, the  market value of   Jm°S>©Z Ho$ AZwgma, eo`a H$s _mH}$Q> d¡ë`y â`yMa
                  a share is equal to the present value of future  {S>{dS>oÝS>g H$s dV©_mZ d¡ë`y Ho$ ~am~a hmoVr h¡Ÿ&
                  dividends.

                                                           1 b 
                                                             –
                      Symbolically,                   P = E
                                                           K – br
                      Where,
                      P = Price of the share.                E = Earning Per Share
                      b = Percentage of earning distributed as dividends.
                      K = Cost of capital/Capitalization Ratio.
                      br = g = growth rate i.e. rate of return on investment.
                           br = b × r i.e. Retention ratio × growth rate
                                         Dividend Policy  and the Value of the firm
                                                  (GORDON'S MODEL)

                    Growth firm, r > K NPP                                    Declining firm, r < K
                                                  Normal firm, r = K
                                                        Basic Data

                         r = 0.15                       r = 0.10                r = 0.08
                         K = 0.10                      K  = 0.10                K = 0.10
                        EPS = ` 10                     EPS = ` 10              EPS = ` 10

                                    Payout Ratio, (1 - b) = 40%, Retention Ratio, b = 60%

                  g = br = 0.6 × 0.15 = 0.9      g = br = 0.6 × 0.10 = .06   g = br = 0.6 × 0.08 = 0.048
                          10  1 0.6                   10 1 0.6             10 1 0.6  
                       P                            P                      P 
                              
                          0.10 0.09                      0.10 0.06             0.10 0.048
                           4                               4                        4
                            =   `   400                   =   `   100              =   `   77
                          0.01                            0.04                     0.052

                                    Payout Ratio, (1 - b) = 60%, Retention Ratio, b = 40%

                  g = br = 0.4 × 0.15 = .06      g = br = 0.4 × 0.10 = 0.4  g = br = 0.4 × 0.08 = 0.032
                          10  1 0.4                  10  1 0.4             10 1 0.4  
                      P                             P                      P 
                          0.10 0.06                      0.10 0.04              0.10 0.032
                                                            
                              
                            6                              6                       6
                            =    `  150                   =   `  100             =    `   88
                           0.04                           0.06                   0.068
   246   247   248   249   250   251   252   253   254   255   256