Page 253 - Corporate Finance PDF Final new link
P. 253

NPP













                  BRILLIANT’S                       Dividend Decision                               253


                  to  avoid risk  and therefore  they prefer  near  h¢ Am¡a Bg{cE do â`yMa {S>{dS>oÝS> Ho$ ~OmE dV©_mZ {S>{dS>oÝS²>g
                  dividend to future dividends.               ng§X H$aVo h¢Ÿ&
                      The Gordon's model is based on bird in      Jm°S>©Z _m°S>c, ~S>© BZ X hoÝS> Am°½`y©__oÝQ> na AmYm[aV
                  the hand argument. A bird in hand is better  h¡ Omo `h VH©$ XoVm h¡ {H$ ^{dî` _| Š`m CncãY hmo gH$Vm
                  than two in the bush, is based on the logic that
                  what  is available  at present  is preferable  to  h¡ Ho$ ~Om` dV©_mZ _| Š`m CncãY h¡, Á`mXm ~ohVa h¡Ÿ&
                  what may be available in the future. Accord-  Cgr àH$ma, `{X {S>{dS>oÝS> nm°{cgr H$mo A{ZpíMVVm Ho$
                  ingly, when dividend policy is considered in
                  the  context  of  uncertainty,  the  appropriate  g§X^© _| XoIm OmE Vmo C{MV {S>ñH$mCÝQ> aoQ> K H$mo pñWa
                  discount  rate  K  cannot  be  assumed  to  be  Zht _mZm Om gH$VmŸ& g§jon _|, BZdoñQ>g© A{ZpíMVVm H$mo
                  constant. In brief, investor would like to avoid  Xya H$aZm MmhVo h¢ Ed§ `{X g^r MrO| pñWa hmo Vmo do eo`a,
                  uncertainty and would be willing to pay higher
                  price for the share that pays a higher current  Omo dV©_mZ _| CÀMV_ {S>{dS>oÝS> àXmZ H$ao, Ho$ {cE CÀM
                  dividend if all other things remain constant.  H$s_V AXm H$aZo Ho$ {cE VËna hm|JoŸ&
                   Illustration 3.2.3

                      The following information is available in respect of the rate of return on investment (r), the
                  capitalization rate (k ) and earnings per share (E) of XYZ Ltd.:
                                    e
                      XYZ {b{‘Q>oS> Ho$ {Zdoe na [aQ>Z© aoQ> (r), H¡${nQ>bmBOoeZ aoQ> (k ) VWm A{Zª½g na eo¶a (E) Ho$ g§~§Y ‘|
                                                                        e
                  {ZåZ{b{IV gyMZm CnbãY h¢…
                                                       r = 12 %; E = ` 20
                      Determine the value of its shares on the basis of Gordon’s model assuming the following:
                      {ZåZ{b{IV ‘mZVo hþE Jm°S>©Z Ho$ ‘m°S>b Ho$ AmYma na BgHo$ eo¶a Ho$ ‘yë¶ H$m {ZYm©aU H$s{OE…

                              D/P ratio  (D/P aoemo)   Retention ratio ([aQ>|eZ aoemo)   k (%)
                                                                                           e
                                      (1–b)                       (b)
                      (a)             10                          90                       20
                      (b)             20                          80                       19
                      (c)             30                          70                       18
                      (d)             40                          60                       17
                      (e)             50                          50                       16
                      (f)             60                          40                       15
                      (g)             70                          30                       14

                  Solution:
                          Dividend Policy and Value of Shares of Hypothetical Ltd. (Gordon’s Model)
                  (a) D/P ratio     10        Retention ratio    = 90       `  20 (1 0.9)  `  2
                                                                         P                   `  21.74
                                                                                
                                              br = 0.9 × 0.12 = 0.108        0.20 0.108  0.092
                  (b) D/P ratio     20        Retention ratio    = 80           `  20 (1 0.8)
                                                                            P             `  42.55
                                              br = 0.8 × 0.12 = 0.096           0.19 0.096
   248   249   250   251   252   253   254   255   256   257   258