Page 3 - DOC-20220324-WA0012.-488-500
P. 3

11.1 Methods for First-Order Systems  467

                                A program to proceed from x(t) to x(t + h) and from y(t) to y(t + h) is easily written by
                                using a few terms of the Taylor series:
                                                                 h 2    h 3    h 4
                                                                                  (4)
                                               x(t + h) = x + hx +  x +   x +    x   + ···
                                                                  2     6      24
                                                                 h 2    h  3   h  4
                                                                                  (4)
                                               y(t + h) = y + hy +  y +   y +    y   + ···
                                                                  2     6      24
                                together with equations for the various derivatives. Here, x and y and all their derivatives
                                are functions of t; that is, x = x(t), y = y(t), x = x (t), y = y (t), and so on.




                                    A pseudocode program that generates and prints a numerical solution from 0 to 1 in
                                                              4
                                100 steps is as follows. Terms up to h have been used in the Taylor series.
                                    program Taylor System1
                                                                            (4)
                                    integer k; real h, t, x, y, x , y , x , y , x , y , x , y (4)






                                    integer nsteps ← 100;  real a ← 0, b ← 1
                                    x ← 1;  y ← 0; t ← a
                                    output 0, t, x, y
                                    h ← (b − a)/nsteps
                                    for k = 1 to nsteps do
                                       x ← x − y + t(2 − t(1 + t))

                                                    2
                                       y ← x + y + t (−4 + t)




                                       x ← x − y + 2 − t(2 + 3t)


                                       y ← x + y + t(−8 + 3t)




                                       x ← x − y − 2 − 6t
                                       y ← x + y − 8 + 6t



                                       x  (4)  ← x − y − 6


                                       y (4)  ← x + y + 6


                                                      1      1        1


                                       x ← x + h x + h x + h x + h x      (4)

                                                      2      3        4
                                                      1      1        1



                                       y ← y + h y + h y + h y + h y      (4)
                                                      2      3        4
                                       t ← t + h
                                       output k, t, x, y
                                    end for
                                    end program Taylor System1
                                Vector Notation
                                Observe that System (1) can be written in vector notation as
                                                                           2   3
                                                        x      x − y + 2t − t − t
                                                           =            2   3                        (3)
                                                        y      x + y − 4t + t
                                with initial conditions

                                                               x(0)     1
                                                                    =
                                                               y(0)     0
                                This is a special case of a more general problem that can be written as


                                                              X = F(t, X)
                                                                                                     (4)
                                                              X(a) = S, given
   1   2   3   4   5   6   7   8