Page 399 - МАКРОЭКОНОМИКА (УЧЕБНИК)
P. 399
МАКРОЭКОНОМИКА
макроэкономических моделях зачастую используются производ-
ственные функции с постоянной отдачей от масштаба. Это означает, что
при одновременном изменении всех факторов производства на одина-
ковую величину, сама функция меняется также на ту же величину. Это
свойство позволяет анализировать взаимосвязь между факторами произ-
водства и объемом производства в экономике.
Математически это означает, что для любого положительного числа
х выполняется условие:
хY= AF (хL, хK, хH, хN).
Производственная функция является важным инструментом для
оценки связи между использованными ресурсами и объемом выпуска
продукции. Она позволяет описать, как увеличение различных факторов
производства (труд, капитал, человеческий капитал, природные ресурсы)
влияет на общий выпуск. Если все факторы увеличиваются пропорци-
онально, то при постоянной отдаче от масштаба объем выпуска будет
увеличиваться пропорционально увеличению ресурсов, что описывается
уравнением с х=2.
При этом можно использовать уравнение вида Y/L = AF (1, K/L, H/L,
N/L), где Y/L — это продукция на одного работника, а K/L, H/L, N/L пред-
ставляют капиталовооруженность, уровень человеческого капитала и
природных ресурсов на одного работника соответственно. В этой модели
производительность труда зависит от уровня всех этих факторов и уровня
технологического развития, что играет ключевую роль в экономическом
росте и повышении благосостояния.
Экономический рост может быть классифицирован как экстенсив-
ный и интенсивный. Экстенсивный рост связан с увеличением ресурсов,
например, ростом численности рабочей силы или расширением физиче-
ского капитала. Однако **интенсивный рост** представляет собой бо-
лее качественные изменения в экономике, такие как внедрение новых
технологий, повышение квалификации работников и более эффективное
использование ресурсов. Эти факторы влияют на повышение качества
398 Х.Н. САБИРОВ, Р.И. МАРДАНОВА, С.А. K, АЮМОВ

