Page 35 - NGTU_paper_withoutVideo
P. 35

Modern Geomatics Technologies and Applications

          21.    Oshan,  T.M.,  et  al.,  mgwr:  A  Python  implementation  of  multiscale  geographically  weighted
                 regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of
                 Geo-Information, 2019. 8(6): p. 269.
          22.    Sannigrahi,  S.,  et  al.,  Examining  the  association  between  socio-demographic  composition  and
                 COVID-19 fatalities in the European region using spatial regression approach. Sustainable cities
                 and society, 2020. 62: p. 102418.
          23.    Ward, M.D. and K.S. Gleditsch, Spatial regression models. Vol. 155. 2018: Sage Publications.
          24.    Oshan,  T.M.,  J.P.  Smith,  and  A.S.  Fotheringham,  Targeting  the  spatial  context  of  obesity
                 determinants via  multiscale geographically weighted regression.  International journal  of health
                 geographics, 2020. 19: p. 1-17.
          25.    Fotheringham, A.S. and T.M. Oshan, Geographically weighted regression and multicollinearity:
                 dispelling the myth. Journal of Geographical Systems, 2016. 18(4): p. 303-329.





























































                                                                                                              10
   30   31   32   33   34   35   36   37   38   39   40