Page 35 - NGTU_paper_withoutVideo
P. 35
Modern Geomatics Technologies and Applications
21. Oshan, T.M., et al., mgwr: A Python implementation of multiscale geographically weighted
regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of
Geo-Information, 2019. 8(6): p. 269.
22. Sannigrahi, S., et al., Examining the association between socio-demographic composition and
COVID-19 fatalities in the European region using spatial regression approach. Sustainable cities
and society, 2020. 62: p. 102418.
23. Ward, M.D. and K.S. Gleditsch, Spatial regression models. Vol. 155. 2018: Sage Publications.
24. Oshan, T.M., J.P. Smith, and A.S. Fotheringham, Targeting the spatial context of obesity
determinants via multiscale geographically weighted regression. International journal of health
geographics, 2020. 19: p. 1-17.
25. Fotheringham, A.S. and T.M. Oshan, Geographically weighted regression and multicollinearity:
dispelling the myth. Journal of Geographical Systems, 2016. 18(4): p. 303-329.
10