Page 474 - NGTU_paper_withoutVideo
P. 474

کیتاموئژ نیون یاهدربراک و اه یروآ نف یلم سنارفنک

                                                                                                   عجارم  6 .


              [1]   E. Oruklu, D. Pesty, J. Neveux, and J. Guebey, “Real-Time Traffic Sign Detection and Recognition
                    for In-Car Driver Assistance Systems,” pp. 976–979, 2012.
              [2]   J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs . computer : Benchmarking machine
                    learning algorithms for traffic sign recognition,” Neural Networks, vol. 32, pp. 323–332, 2012.
              [3]   L. Ma, Y. Li, J. Li, C. Wang, R. Wang, and M. A. Chapman, “Mobile laser scanned point-clouds for
                    road object detection and extraction: A review,” Remote Sens., vol. 10, no. 10, pp. 1–33, 2018.
              [4]   J. M. Lillo-castellano, I. Mora-jiménez, C. Figuera-pozuelo, and J. L. Rojo-álvarez, “Neurocomputing
                    Traf fi c sign segmentation and classi fi cation using statistical learning methods,” vol. 153, pp. 286–
                    299, 2015.
              [5]   A. Hechri and A. Mtibaa, “Lanes and Road Signs Recognition for Driver Assistance System,” vol. 8,
                    no. 6, 2011.
              [6]   S. Waite, FPGA-Based Traffic Sign Recognition for Advanced Driver Assistance Systems, vol. 03.
                    2013.
              [7]   P. Duygulu, K. Barnard, J. F. G. De Freitas, and D. A. Forsyth, “Object Recognition as Machine
                    Translation : Learning a Lexicon for a Fixed Image,” pp. 97–98, 2002.
              [8]   H. Guan, J. Li, Y. Yu, C. Wang, M. Chapman, and B. Yang, “ISPRS Journal of Photogrammetry and
                    Remote Sensing Using mobile laser scanning data for automated extraction of road markings,” ISPRS
                    J. Photogramm. Remote Sens., vol. 87, pp. 93–107, 2014.
              [9]   R. Azad, B. Azad, and I. T. Kazerooni, “OPTIMIZED METHOD FOR IRANIAN ROAD SIGNS,”
                    vol. 4, no. 1, pp. 19–26, 2014.
              [10]  T. Bui, O. Ghita, P. Whelan, and H. Trang, “A Robust Algorithm for Detection and Classification of
                    Traffic Signs in Video Data,” pp. 108–113, 2012.
              [11]  C. A. I. Zi-xing and G. U. Ming-qin, “Traffic sign recognition algorithm based on shape signature
                    and dual-tree complex wavelet transform,” pp. 433–439, 2013.
              [12]  F. Zaklouta and B. Stanciulescu, “Real-time traffic sign recognition in three stages,” Rob. Auton.
                    Syst., vol. 62, no. 1, pp. 16–24, 2014.
              [13]  Z. Sun, H. Wang, W. Lau, G. Seet, and D. Wang, “Neurocomputing Application of BW-ELM model
                    on traf fi c sign recognition,” vol. 128, pp. 153–159, 2014.
              [14]  S. Wang, P. Zhang, Z. Dai, Y. Wang, R. Tao, and S. Sun, “Research and Practice of Traffic Lights
                    and Traffic Signs Recognition System Based on Multicore of FPGA *,” vol. 2013, no. February, pp.
                    61–64, 2013.
              [15]  L. L. Scans, “Photographs and Ground,” 2001.
              [16]  S. Luo, C. Wang, F. Pan, X. Xi, G. Li, and S. Nie, “Estimation of wetland vegetation height and leaf
                    area index using airborne laser scanning data,” Ecol. Indic., vol. 48, pp. 550–559, 2015.
              [17]  M. Nilsson et al., “Remote Sensing of Environment A nationwide forest attribute map of Sweden
                    predicted using airborne laser scanning data and fi eld data from the National Forest Inventory,”
                    Remote Sens. Environ., vol. 194, pp. 447–454, 2017.
              [18]  B. Guo, X. Huang, F. Zhang, and G. Sohn, “ISPRS Journal of Photogrammetry and Remote Sensing
                    Classification of airborne laser scanning data using JointBoost,” ISPRS J. Photogramm. Remote
                    Sens., vol. 100, pp. 71–83, 2015.
              [19]  A. Nurunnabi, W. Geoff, and D. Belton, Outlier detection and robust normal-curvature estimation in
                    mobile laser scanning 3D point cloud data, vol. 48. 2014.
              [20]  A. Serna and B. Marcotegui, “ISPRS Journal of Photogrammetry and Remote Sensing Detection ,
                    segmentation and classification of 3D urban objects using mathematical morphology and supervised
                    learning,” vol. 93, pp. 243–255, 2014.
              [21]  R. Lindenbergh and P. Pietrzyk, “Change detection and deformation analysis using static and mobile
                    laser scanning,” 2015.
              [22]  B. Yang, Z. Dong, G. Zhao, and W. Dai, “Hierarchical extraction of urban objects from mobile laser
                    scanning data,” ISPRS J. Photogramm. Remote Sens., vol. 99, pp. 45–57, 2015.
   469   470   471   472   473   474   475   476   477   478   479