Page 4 - FORMULA DBM30043
P. 4

DIFFERENTIATION
                         d
                    t.         = 0,k is constant                     z.          - nx'-t
                        dx&)                                             *ru,              lPower  Rutel

                    3.  *@*")  = snvn-l                              4.           t g (x))            (x)
                        ax                                               ftUrrl           = f'  (x) t s'
                         ddudu                                                      du  du
                    5.          =  u     u     lProduct   Rulef      5. !_A  _rdi-=um
                        *luu)       d.r*  a,                                                    fQuotient  Rute]
                                                                          dx\u)        D2
                        dv  du  dv                                        d
                    7.                  [Chaii  Rule)                8.  -- (e')  =  e*
                        dr-  d*^ d"                                      a.x
                                                                          d         1,
                    9.                                              10.   ,   (ln x)
                        ftG*.u)-raxibxfi@r+o)                            ax         x
                                                                          d
                   11.             b)l  =                + b)       L2.
                        ftwro*+          *xfr{ax                         *(sinx)   = cosr
                   13.   d                                          L4.
                        ;   (cos a')  = -  sin x                         {rrr^nx)  =  secz x
                   15.                                              16.
                        ftbrn{o*+  b)l :  cos(ax +  D  xfr@x  + b)       fi[ror{o*+  b)l  = -  sin(ax + q xfi@x  + b)

                   17.            b)l  =  secz(ax  + fi             18.  d"                        du
                        {Lontor+                  xfr@x  + b)            ;[sin"u]  = nsin'-1  u x cos  "";
                   19.         u) : n cosn-7 u x   xff              20.
                        fi[ror"              -sinu                       ftUon"  uf  = n tan'-' u x sec2,  "*




                                                            INTEGRATION
                         f        exn+l                                  |             (ax  *  b\n+7
                    1.  I  axndx :  ----:--;* c  ;{n +  -1}         2.       + b)"dx              -t c;{n +
                        J         n*1.                                  J@x          =  !1("-+,            -1}

                                                                         f
                   3.     O O.  = kx * c,k is constclnt             4.
                                                                                       -
                        I                                               J I f(x)dx =  F(b)  F(a)
                   5. ji*=rnr*c                                     6.          o* =lxur(ax  + b) + c
       v                                                                { ;*

                   7.            e'+c                               8.    ,"'*o o* :    eo*+b  + c
                        [".a*:                                          [           *x

                        I                                               {
                   9.     sinx ax  = -cosx+c                       10.    ,or* dx =  sinx I  c

                   77.               tanx+c
                        lr"r'xdx:
                   12.                          7
                        I  sin(ax t b) dx :  -  d .   _xcos(ax*b)+c
                                           VTlax   + b)
                        t1
                  13.
                       J  cos(ax +b) dx =  O : _x     sin (ax +b) + c
                       "
                                         dilax-t  b)
                  L4.                   '1
                         ,rr'{o, + b) d.x
                       {
                                          fi(ax  + b)
   1   2   3   4