Page 26 - CASA Bulletin of Anesthesiology 2022, Vol 9, No 1 (1)
P. 26

CASA Bulletin of Anesthesiology



               [7] H. Wei, P. Leeds, R.W. Chen, W. Wei, Y. Leng, D.E. Bredesen, D.M. Chuang, Neuronal apoptosis induced by
                 pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2
                 overexpression, J Neurochem, 75 (2000) 81-90.
               [8] A.M. Bruno, J.Y. Huang, D.A. Bennett, R.A. Marr, M.L. Hastings, G.E. Stutzmann, Altered ryanodine receptor expression in
                 mild cognitive impairment and Alzheimer's disease, Neurobiol Aging, 33 (2012) 1001 e1001-1006.
               [9] S. Chakroborty, I. Goussakov, M.B. Miller, G.E. Stutzmann, Deviant ryanodine receptor-mediated calcium release resets
                 synaptic homeostasis in presymptomatic 3xTg-AD mice, J Neurosci, 29 (2009) 9458-9470.
               [10] J. Liu, C. Supnet, S. Sun, H. Zhang, L. Good, E. Popugaeva, I. Bezprozvanny, The role of ryanodine receptor type 3 in a
                 mouse model of Alzheimer disease, Channels (Austin), 8 (2014) 230-242.
               [11] R. Bussiere, A. Lacampagne, S. Reiken, X. Liu, V. Scheuerman, R. Zalk, C. Martin, F. Checler, A.R. Marks, M. Chami,
                 Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine
                 receptor, J Biol Chem, 292 (2017) 10153-10168.
               [12] J. McDaid, S. Mustaly-Kalimi, G.E. Stutzmann, Ca(2+) Dyshomeostasis Disrupts Neuronal and Synaptic Function in
                 Alzheimer's Disease, Cells, 9 (2020).
               [13] J. Yao, B. Sun, A. Institoris, X. Zhan, W. Guo, Z. Song, Y. Liu, F. Hiess, A.K.J. Boyce, M. Ni, R. Wang, H. Ter Keurs, T.G.
                 Back, M. Fill, R.J. Thompson, R.W. Turner, G.R. Gordon, S.R.W. Chen, Limiting RyR2 Open Time Prevents Alzheimer's
                 Disease-Related Neuronal Hyperactivity and Memory Loss but Not β-Amyloid Accumulation, Cell Rep, 32 (2020) 108169.
               [14] H. Zhang, S. Sun, A. Herreman, B. De Strooper, I. Bezprozvanny, Role of presenilins in neuronal calcium homeostasis, J
                 Neurosci, 30 (2010) 8566-8580.
               [15] J. Peng, G. Liang, S. Inan, Z. Wu, D.J. Joseph, Q. Meng, Y. Peng, M.F. Eckenhoff, H. Wei, Dantrolene ameliorates
                 cognitive decline and neuropathology in Alzheimer triple transgenic mice, Neurosci Lett, 516 (2012) 274-279.
               [16] C. Overk, E. Masliah, Perspective on the calcium dyshomeostasis hypothesis in the pathogenesis of selective neuronal
                 degeneration in animal models of Alzheimer's disease, Alzheimers Dement, 13 (2017) 183-185.
               [17] H. Zhang, J. Liu, S. Sun, E. Pchitskaya, E. Popugaeva, I. Bezprozvanny, Calcium signaling, excitability, and synaptic
                 plasticity defects in a mouse model of Alzheimer's disease, J Alzheimers Dis, 45 (2015) 561-580.
               [18] S. Chakroborty, C. Briggs, M.B. Miller, I. Goussakov, C. Schneider, J. Kim, J. Wicks, J.C. Richardson, V. Conklin, B.G.
                 Cameransi, G.E. Stutzmann, Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer's disease,
                 PLoS One, 7 (2012) e52056.
               [19] K.M. Chung, E.J. Jeong, H. Park, H.K. An, S.W. Yu, Mediation of Autophagic Cell Death by Type 3 Ryanodine Receptor
                 (RyR3) in Adult Hippocampal Neural Stem Cells, Front Cell Neurosci, 10 (2016) 116.
               [20] S.C. Hopp, H.M. D'Angelo, S.E. Royer, R.M. Kaercher, A.M. Crockett, L. Adzovic, G.L. Wenk, Calcium dysregulation via
                 L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction
                 during chronic neuroinflammation, J Neuroinflammation, 12 (2015) 56.
               [21] R. Belfiore, A. Rodin, E. Ferreira, R. Velazquez, C. Branca, A. Caccamo, S. Oddo, Temporal and regional progression of
                 Alzheimer's disease-like pathology in 3xTg-AD mice, Aging Cell, 18 (2019) e12873.
               [22] Z. Wu, B. Yang, C. Liu, G. Liang, M.F. Eckenhoff, W. Liu, S. Pickup, Q. Meng, Y. Tian, S. Li, H. Wei, Long-term
                 dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice, Alzheimer Dis Assoc Disord, 29
                 (2015) 184-191.
               [23] M.D. Lindner, Reliability, distribution, and validity of age-related cognitive deficits in the Morris water maze, Neurobiol
                 Learn Mem, 68 (1997) 203-220.
               [24] Y. Shi, L. Zhang, X. Gao, J. Zhang, M. Ben Abou, G. Liang, Q. Meng, A. Hepner, M.F. Eckenhoff, H. Wei, Intranasal
                 Dantrolene as a Disease-Modifying Drug in Alzheimer 5XFAD Mice, J Alzheimers Dis, 76 (2020) 1375-1389.
               [25] H. Oakley, S.L. Cole, S. Logan, E. Maus, P. Shao, J. Craft, A. Guillozet-Bongaarts, M. Ohno, J. Disterhoft, L. Van Eldik, R.
                 Berry, R. Vassar, Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five
                 familial Alzheimer's disease mutations: potential factors in amyloid plaque formation, J Neurosci, 26 (2006) 10129-10140.
               [26] Y. Wang, G. Liang, S. Liang, R. Mund, Y. Shi, H. Wei, Dantrolene Ameliorates Impaired Neurogenesis and
                 Synaptogenesis in Induced Pluripotent Stem Cell Lines Derived from Patients with Alzheimer's Disease,
                 Anesthesiology, 132 (2020) 1062-1079.
               [27] E.W. Wuis, N.V. Rijntjes, E. Van der Kleijn, Whole-body autoradiography of 14C-dantrolene in the marmoset monkey,
                 Pharmacol Toxicol, 64 (1989) 156-158.
               [28] R.K. Badhan, M. Kaur, S. Lungare, S. Obuobi, Improving brain drug targeting through exploitation of the nose-to-brain
                 route: a physiological and pharmacokinetic perspective, Curr Drug Deliv, 11 (2014) 458-471.
               [29] D. Mittal, A. Ali, S. Md, S. Baboota, J.K. Sahni, J. Ali, Insights into direct nose to brain delivery: current status and future
                 perspective, Drug Deliv, 21 (2014) 75-86.
               [30] J. Wang, Y. Shi, S. Yu, Y. Wang, Q. Meng, G. Liang, M.F. Eckenhoff, H. Wei, Intranasal administration of dantrolene
                 increased brain concentration and duration, PLoS One, 15 (2020) e0229156.







                                                                                            P a g e  25 | 60
   21   22   23   24   25   26   27   28   29   30   31