Page 103 - Basic Statistics
P. 103
98
5.2 THE MULTIPLE LINEAR REGRESSION MODEL
5.2.1 MODEL AND ESTIMATION COEFFICIENTS
Regresi ganda memodelkan hubungan antara suatu variabel terikat ( Y )
dengan beberapa variabel bebas ( Xi ). Model aditip linier bagi regresi ganda
adalah:
Multiple regression models is a model of the relationship between a dependent
variable (Y) with several independent variables (Xi). Linear additive model for
multiple regression is:
Y j = 0 + 1X1 j + 2 X2 j + …+ p Xp j + j (G.1)
In the matrix and vector algebra expression,
Y = X + (G.2)
or
Y 1 1 X 1 1 X 2 1 X 3 1 . . . X p 1 β ε 1
0
Y 2 1 X 1 2 X 2 2 X 3 2 . . . X p 2 β ε 2
1
Y 3 1 X 1 3 X 2 3 X 3 3 . . . X p 3 β 2 ε 3
. = . . . . . . + .
. . . . . . . .
. . . . . . . .
Y n 1 X n 1 X n 2 X n 3 . . . X n p β p ε n
( n x 1 ) ( n x (p+1) ) ( n x 1) ( n x 1 )
In association with regression modeling, the dependent variable Y is
often called the response variable, and the independent variable Xi is called
explanatory variables or regressors. Parameters called regression coefficients,
while the difference between the expected value of Y in the model ( E(Y)= X )
with the actual value of Y, which is called the error.
~~* CHAPTER 5 THE MULTIPLE LINEAR REGRESSION MODEL *~~