Page 103 - Basic Statistics
P. 103

98




                     5.2  THE MULTIPLE LINEAR REGRESSION MODEL


                     5.2.1   MODEL AND ESTIMATION COEFFICIENTS

                            Regresi ganda memodelkan hubungan antara suatu variabel terikat ( Y )

                     dengan beberapa variabel bebas ( Xi ). Model aditip linier bagi regresi ganda

                     adalah:
                     Multiple regression models is a model of the relationship between a dependent

                     variable (Y) with several independent variables (Xi). Linear additive model for

                     multiple regression is:


                     Y j = 0 + 1X1 j + 2 X2 j + …+ p Xp j +  j                                 (G.1)

                     In the matrix and vector algebra expression,


                       Y = X  +                                                                   (G.2)

                     or


                       Y    1             1    X  1   1         X  2   1         X  3   1          .    .    .         X  p   1     β       ε   1  
                                                                            0         
                       Y    2          1    X  1   2        X  2   2         X  3   2         .    .    .         X     p   2     β     ε   2  

                                                                           1          
                          Y 3          1    X  1   3        X  2   3         X  3   3         .    .    .         X  p   3      β     2     ε    3    
                                
                      
                                                                                       


                            .     =     .        .            .               .                            .             .        +    .  
                                
                                                                          
                                                                                        
                       .         .            .            .               .                            .            .        .    
                                                                                      
                        .          .            .            .               .                            .            .         .     
                       Y    n      1           X n  1      X n  2        X n  3       .    .    .          X n  p     β   p       ε    n  
                                                                          
                                
                                                                                      

                       ( n x 1 )                              (  n  x  (p+1) )                           ( n x 1)     ( n x 1 )


                            In  association  with  regression  modeling,  the  dependent  variable  Y  is
                     often  called  the  response  variable,  and  the  independent  variable  Xi  is  called
                     explanatory variables or regressors. Parameters      called regression coefficients,

                     while the difference between the expected value of Y in the model ( E(Y)= X  )

                     with the actual value of Y, which is    called the error.






                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   98   99   100   101   102   103   104   105   106   107   108