Page 107 - Basic Statistics
P. 107

102





                     The matrix  X’X is

                            [,1]      [,2]   [,3]     [,4]

                     [1,]   30.0    5733.0   2085   354.70
                     [2,] 5733.0 1463179.0 411076 67085.70
                     [3,] 2085.0  411076.0 147243 24523.00
                     [4,]  354.7   67085.7  24523  4583.39


                     and the   matrix  X’Y   is

                               [,1]

                     [1,]    83.840
                     [2,] 17097.380
                     [3,]  5953.470
                     [4,]   973.641


                     The inverse of the X’X  matrix, i.e the matrix ( X’X )  is
                                                                           -1

                               [,1]        [,2]            [,3]           [,4]

                     [1,]  2.8559225951  6.173356e-004 -0.03535068677 -4.090973e-002
                     [2,]  0.0006173356  3.341412e-006 -0.00001807261  1.409908e-008
                     [3,] -0.0353506868 -1.807261e-005  0.00053385411  1.439104e-004
                     [4,] -0.0409097295  1.409908e-008  0.00014391044  2.613921e-003



                     Estimate of the regression coefficients using Eq.(G.4),
                      ˆ
                                 -1
                     β  = ( X’X ) ( X’Y )


                                                           ˆ
                     So the regression coefficient vector  β  is
                             [,1]

                     [1,] -0.295271027
                     [2,]  0.001305816
                     [3,]  0.045605744
                     [4,] -0.027843496


                     Furthermore, the regression equation was obtained following

                      ˆ
                     Y  = -0,2953 + 0,0013 X1 + 0.0456 X2 – 0,0278 X3




                     Results of computerized using Splus, displays the following output






                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   102   103   104   105   106   107   108   109   110   111   112