Page 112 - Basic Statistics
P. 112

107




                      ˆ
                     Y  = H Y,  so that
                           ˆ
                     Var(Y ) = H [Var (Y) ] H’
                             = H I H’ 
                                        2
                             = H H’ 
                                       2
                             = H                                                                  (G.11)
                                   2
                                                                                   ˆ
                     Diagonal element is the variance for the predicted value Y , i = 1, 2, ... n. Value
                                                                                    i
                     prediction  is  used  to  estimate  the  means  Y  for  various  combinations  of

                     independent  variables  is  given.  For  the  value  prediction  of  the  future

                     (predictive  value)  for  various  combinations  of  values  of  the  independent
                                                  ˆ
                                                                                              2
                     variables is given, written Y  pred, then each variance increased by  . Variance-
                                                   i
                     covariance matrix for this prediction is

                            ˆ
                                               2
                      Var (Y pred  ) = ( I + H )                                                  (G.12)


                     e  = [I - H] Y ,  so that
                     Var ( e ) = [I - H] [Var (Y) ] [I - H]’

                                                 2
                             = [I - H] I [I - H]’ 
                                               2
                             = [I - H] [I - H]’ 
                                        2
                             = [I - H]                                                            (G.13)



                            Summary of the distribution of each random vectors can be expressed as
                     follows:

                     Y   N( X , I   )
                                   2
                      ˆ
                     β   N( , ( X’X )    )
                                          2
                                      -1
                      ˆ
                     Y   N( X, H  )
                                     2
                     e    N( 0, [I - H]   )
                                        2
                      ˆ
                     Y pred   N( X, [I + H]    )
                                              2






                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   107   108   109   110   111   112   113   114   115   116   117