Page 111 - Basic Statistics
P. 111

106




                     U=AY.  Furthermore,  the  definition  of  variance-covariance  matrix  for  the

                     random vector Y :

                     Var (Y) = E( [ Y - E(Y)][ Y - E(Y)]’ )

                     Matrix multiplication results [ Y - E(Y)][ Y - E(Y)]’ size n x n, with main diagonal

                                             2
                     elements ( Yi  - E(Yi) )  and the nondiagonal elements ( Yi - E(Yi))(Yj - E(Yj))’.
                     Expectation value for the two groups of consecutive elements are the variance

                     covariance.

                            If the definition of the variance-covariance matrix is applied to U = A Y,

                     then

                     Var (U) = E( [U - E(U)][ U - E(U)]’ )
                             = E( [A Y - E(A Y)][ A Y - E(A Y)]’ )

                             = E(A [ Y - E(Y)][ Y - E(Y)]’ A’ )

                             = A E([ Y - E(Y)][ Y - E(Y)]’) A’
                             = A [Var (Y) ] A’                                                     (G.8)


                                     2
                     For Var (Y) = I ,

                                     2
                     Var (U) =  A [I ]  A’
                                      2
                             = A A’                                                               (G.9)


                     Description: Elements of a diagonal matrix AA’ is the sum of the squares of the

                     coefficients  of  i-th  linear  function,  then  the  results  perkaliannya  with     is
                                                                                                      2
                     variance a i-th linear function. Nondiagonal elements (i, j) is the cross product
                     between the coefficients of the linear function, then the result of multiplying it

                          2
                     by   is covariance between the two linear functions.
                                                        ˆ
                                                           ˆ
                            Variance of each statistic, β , Y , and e :
                      ˆ
                     β  = [( X’X ) ( X’)] Y   , so that
                                 -1
                           ˆ
                     Var( β ) = [( X’X ) ( X’)] [Var (Y) ] [( X’X ) ( X’)]’
                                       -1
                                                                -1
                                                     -1
                             = ( X’X ) ( X’ X )( X’X )  
                                      -1
                                                         2
                                      -1
                                         2
                             = ( X’X )                                                            (G.10)

                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   106   107   108   109   110   111   112   113   114   115   116