Page 115 - Basic Statistics
P. 115

110




                              ˆ
                     SS()   = β ’ ( X*)’ Y   = (1/n) (1’Y)’ ( 1’Y)
                            = (1/n)   Y’ ( 1 1’ )Y                                                 (G.17)


                     because of  1’Y =   Y , then SS() = n  Y .
                                                                 2
                                            i

                     If we let 1 1’ = J, with J is a matrix of size (nxn) with all elements 1, then


                     SS(Reg)   = SS(Model) – SS()

                                    =  Y’ H Y  -   Y’ (J/n)Y

                                  = Y’ ( H  -  J/n )Y                                              (G.18)

                     Degrees of freedom for SS() is 1, so the degrees of freedom for SS (Reg) is p.
                            Partition sum of the squares on multiple linear regression is shown by

                     the following table.

                      Table 5.8     Analysis of variance summary for regression analysis.

                         Source of     Degrees         Sum of Squares            Computational
                         variation        of                Formula                 Formula
                                       Fredom

                                                                                         2
                       Totalcorrt         n-1     Y’ ( I –  J )Y               Y’ Y - n Y
                                                                                ˆ
                       Model             p +1     Y’ H Y                       β ’ X’Y

                                                                                   2
                         Mean              1      (1/n)   Y’ (1 1’) Y          n Y
                                                                                ˆ
                                                                                             2
                       Regression          p      Y’  [H – J/n] Y              β ’ X’Y  - n Y

                                                                                       ˆ
                       Residual         n-(p+1)   Y’  [I - H] Y                 Y’ Y -  β ’ X’Y.


                            To test the significance of the regression model, or whether a group of

                     independent variables can provide information on the variation of Y around the

                     middle value, formulated the following hypothesis test.


                     H0 : 1 = 2  = … = p = 0

                     H1 :  j  0 , For the smallest one of the j.        j = 1, 2, … p            (G.19)









                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   110   111   112   113   114   115   116   117   118   119   120