Page 108 - Basic Statistics
P. 108

103





                     Tabel 5.7    The Splus  output

                     *** Linear Model ***


                     Coefficients:
                                   Value Std. Error t value Pr(>|t|)
                     (Intercept) -0.2949  0.9986    -0.2953  0.7701
                       radiation  0.0013  0.0011     1.2080  0.2379
                     temperature  0.0456  0.0137     3.3429  0.0025
                            wind -0.0280  0.0302    -0.9268  0.3626


                     Residual standard error: 0.5909 on 26 degrees of freedom
                     Multiple R-Squared: 0.4583
                     F-statistic: 7.332 on 3 and 26 degrees of freedom, the p-value is 0.00102




                     5.2.3    FORMS OF LINEAR FUNCTION OF  Y

                            Here it can be shown that the statistics (estimator) in multiple regression
                                                                            ˆ
                                                                                                        ˆ
                     is  a  linear  function  of  Y.  These  statistics  include  β (coefficient  estimators),  Y
                     (predicted value), and  e (residual).

                      ˆ
                     β   = ( X’X ) ( X’Y )
                                  -1

                         = [( X’X )  X’] Y                                                          (G.5)
                                   -1

                             ˆ
                     Vector  β  is a linear function of Y, with coefficients [( X’X )   X’ ] .
                                                                                   -1

                            The  vector  of  estimated  means  of  dependent  variable  Y  for  values  the

                                                                                           ˆ
                                                                                   ˆ
                     independent  variables  in  the  data  set  is  computed  as  Y   =  X β .  This  is  the
                                                 ˆ
                     simplest way to compute Y  and useful to express  as a linear function of Y.
                              ˆ
                      ˆ
                     Y    = X β
                         = X ( X’X ) ( X’Y )
                                    -1
                         = [ X ( X’X )  X’] Y
                                     -1
                         = H Y                                                                      (G.6)










                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   103   104   105   106   107   108   109   110   111   112   113