Page 127 - Basic Statistics
P. 127

122





                     Table 5.15    Output of SAS  for a general linear hypothesis testing


                                                The SAS System

                                            L Ginv(X'X) L'               Lb-c


                                  3.3414119E-6      1.4099083E-8      0.0013058159
                                  1.4099083E-8       0.002613921      -0.027843496


                                      Inv(L Ginv(X'X) L')                Inv()(Lb-c)


                                  299274.69475      -1.614241062      390.84258745
                                  -1.614241062      382.56703747      -10.65411167

                     Dependent Variable: Y
                     Test:          Numerator:      0.4035  DF:    2   F value:   1.1562
                                    Denominator:  0.348994  DF:   26   Prob>F:    0.3303



                            The  second  hypothesis  illustration  a  case  m    0.  Suppose  prior
                     information suggested that the intercept 0 for a group of mean of this radiation

                     and wind should be 0.5 (0 = 0.5). We will construct a composite hypothesis by

                     adding constraint 0 = 0.5 to the two conditons in the first null hypothesis. The

                     null null hypothesis is  H0 :  K’   - m = 0  where



                                                    
                                      1   0       0            0  0     0.5-   
                                                          
                                                 

                                               
                                
                                                         
                     K’ - m =  0         1       0          0     1     −     0  
                                                  2      
                                  0          0       0       1            0  
                                                   3  
                     For this hypotesis
                                 0.2949-    - 0.5       0.7949-     
                                
                                                              
                                                
                                                   
                        ˆ

                     K’ β - m =      0.0013      =    0.0013    
                                                   
                                                           
                                 -  0.0280        -  0.0280  

                     and
                                                                                           − 1
                                              2.85592259 51    6.173356e - 004  -     4.090973e - 002
                                                                                         
                                -1
                                     -1
                     (K’ ( X’X )  K)  =  0.00061733   56    3.341412e  - 006     1.409908e - 008  
                                         
                                                                                         
                                          - 0.04090972 95    1.409908e  - 008     2.613921e - 003 





                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   122   123   124   125   126   127   128   129   130   131   132