Page 127 - Basic Statistics
P. 127
122
Table 5.15 Output of SAS for a general linear hypothesis testing
The SAS System
L Ginv(X'X) L' Lb-c
3.3414119E-6 1.4099083E-8 0.0013058159
1.4099083E-8 0.002613921 -0.027843496
Inv(L Ginv(X'X) L') Inv()(Lb-c)
299274.69475 -1.614241062 390.84258745
-1.614241062 382.56703747 -10.65411167
Dependent Variable: Y
Test: Numerator: 0.4035 DF: 2 F value: 1.1562
Denominator: 0.348994 DF: 26 Prob>F: 0.3303
The second hypothesis illustration a case m 0. Suppose prior
information suggested that the intercept 0 for a group of mean of this radiation
and wind should be 0.5 (0 = 0.5). We will construct a composite hypothesis by
adding constraint 0 = 0.5 to the two conditons in the first null hypothesis. The
null null hypothesis is H0 : K’ - m = 0 where
1 0 0 0 0 0.5-
K’ - m = 0 1 0 0 1 − 0
2
0 0 0 1 0
3
For this hypotesis
0.2949- - 0.5 0.7949-
ˆ
K’ β - m = 0.0013 = 0.0013
- 0.0280 - 0.0280
and
− 1
2.85592259 51 6.173356e - 004 - 4.090973e - 002
-1
-1
(K’ ( X’X ) K) = 0.00061733 56 3.341412e - 006 1.409908e - 008
- 0.04090972 95 1.409908e - 008 2.613921e - 003
~~* CHAPTER 5 THE MULTIPLE LINEAR REGRESSION MODEL *~~