Page 128 - Basic Statistics
P. 128

123





                     Notice that causes the hypothesized 0 = 0.5 to be subtracted from the estimated

                     0  = 0.2949. The sum of squares for this composite hypothesis is

                                                              ˆ
                                 ˆ
                         Q  = (K’ β - m)’  (K’ ( X’X )  K)  (K’ β - m)
                                                   -1
                                                       -1
                          = 1.8387
                     and has 3 degrees of freedom. Computed statistic F is



                             Q  k /    . 1 8387  3 /
                         F   =      =          =  . 1  755
                              S 2      . 0 349195

                     Which, again, is much less than the critical value of F for    = 0.05 and (3;26)

                     degrees of freedom. F0.05;3;26  = 2.98 , There is no reason to reject  H0 that  0 = 0.5

                     and 1 = 3 = 0.

                            Output using Statistical Analysis System (SAS) software presented of the

                     results which showing in Table 5.16.
                     Table 5.16    Output of SAS  for a composited hypothesis testing



                                               The SAS System

                                            L Ginv(X'X) L'   Lb-c


                          2.8559225951     0.0006173356      -0.04090973     -0.795271027
                          0.0006173356     3.3414119E-6     1.4099083E-8     0.0013058159
                           -0.04090973     1.4099083E-8      0.002613921     -0.027843496




                                   Inv(L Ginv(X'X) L')    Inv()(Lb-c)


                          0.4758460504     -87.94537601     7.4478046495     -0.700639963
                          -87.94537601      315528.6684     -1378.109811     520.33414234
                          7.4478046495     -1378.109811      499.1379201     -21.62032556

                     Dependent Variable: Y
                     Test:          Numerator:      0.6129  DF:    3   F value:   1.7561
                                    Denominator:  0.348994  DF:   26   Prob>F:    0.1803















                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   123   124   125   126   127   128   129   130   131   132   133