Page 125 - Basic Statistics
P. 125

120




                            The sum of squares for liear hypotesis H0 :  K’    = m is computed by

                     (Searle, 1971),

                                                           ˆ
                              ˆ
                                                     -1
                                                -1
                     Q = (K’ β - m)’  (K’ ( X’X )  K)  (K’ β - m)                                 (G.30)

                                                    ˆ
                     This is quadratic form in K’ β - m with defining matrix A = (K’ ( X’X )  K)  .
                                                                                                       -1
                                                                                                  -1
                     The defining matrix, except 1/ , is a inverse of the varince-covariance matrix
                                                        2
                                                ˆ
                     of  linear  functions    K’ β -  m.  Thus,  tr(AV)  =  tr(Ik)  =  k   .  Furthermore,
                                                                                       2
                     expectation of Q


                               2
                                                         -1
                                                              -1
                     E(Q) = k  + (K’ - m)’  (K’ ( X’X )  K)  (K’  - m)                         (G.31)

                     With  the  assumption  of  normality,  Q/   is  distributed  as  a  noncentral  Chi-
                                                                  2
                     squares random variable with k degrees of freedom. In Rawlings (1988), F-test

                     for hypothesis H0 :  K’   = m  is


                          Q  k /
                      F =                                                                         (G.32)
                           S 2


                     Worked Example 5.5:

                            For example problems using data from environmental studies in Table
                     5.6. By using the statistical software S-Plus, obtained matrix (X’X)  as follows.
                                                                                          -1

                     Matrix  ( X’X )  :
                                    -1


                               [,1]        [,2]            [,3]           [,4]

                     [1,]  2.8559225951  6.173356e-004 -0.03535068677 -4.090973e-002
                     [2,]  0.0006173356  3.341412e-006 -0.00001807261  1.409908e-008
                     [3,] -0.0353506868 -1.807261e-005  0.00053385411  1.439104e-004
                     [4,] -0.0409097295  1.409908e-008  0.00014391044  2.613921e-003


                     Test the contribution of 2 regressors, namely radiation (X1) and wind (X3) on the

                     model that includes variable temperature (X2).





                                   ~~* CHAPTER 5   THE MULTIPLE LINEAR REGRESSION MODEL *~~
   120   121   122   123   124   125   126   127   128   129   130