Page 35 - Basic Statistics
P. 35

30




                                  f c
                     Q1 =  L q 1  +    f q 1 1  .     W
                                         q
                                           1


                                   2   -   5 . 6  
                     Q1 = 5 +              5   .     =    5       + 4.5   =   9.5
                                 5   


                            Q3  lies in the (3n/4)th observation, where 3n /4 = 3(26)/4 = 19.5 . In the

                     column of cumulative frequencies, the 19.5th observation contained in the class

                     ‘ 15 - < 20 ’. thus,

                                   f c
                      Q3 =  L q 3  +    f q 3 3  .     W q 3



                                                   
                               
                      Q3 =15 +   19    -   5 .  15      5   .     =    15  +   4.5          5    = 18.75
                                                        
                                   6               6 

                     Interquartile range = Q3 – Q1 = 18.75 – 9.5 = 9.25



                     Variance :

                               p                p   2  
                                                           
                                             
                                        2
                                 f i ( X i ) −   f i X i   n   / 
                                             
                                                      
                               i= 1            i  = 1    
                                                           
                        2
                       S    =
                                           n − 1
                               6631 . 25    -    ((372.5) 2  /  26 )
                            =
                                        26 − 1
                            = 51.7789




                     Standard deviation:

                            The standard deviation for the grouped data is the square root of the

                     variance for the grouped data, ie  S  =   51  . 7789   =  7.1958








                                 ~~* CHAPTER  2    NUMERICAL MEASURES TO SUMMARIZE DATA *~~
   30   31   32   33   34   35   36   37   38   39   40