Page 3 - Modul Ajar_Persamaan kuadrat sempurna_Nur Asiska (1)_Neat
P. 3
atau pertanyaan-pertanyaan menarik yang berkaitan
dengan persamaan kuadrat sempurna.
Contoh: "Berapa banyak akar real yang mungkin
dimiliki oleh suatu persamaan kuadrat sempurna?"
Ajak siswa untuk berdiskusi dan menjawab
pertanyaan tersebut.
II. Tahap Pembelajaran
A. Pembukaan (5 Menit)
1. Guru mengawali pembelajaran dengan memberi salam dan guru mengajak siswa
berdoa
2. Guru menanyakan kabar siswa dan dilanjutkan dengan guru memeriksa
kehadiran siswa
3. Guru menyampaikan tentang Standar Indikator dan Tujuan Pembelajaran kepada
Siswa dan memberikan motivasi belajar
B. Aktifitas Utama
1. Pertemuan (2 menit)
Guru menghubungkan materi dengan masalah pada kehidupan sehari-hari
Guru menggambar bentuk seperti di bawah ini :
- Seorang pengemudi ingin menghitung jarak tempuh mobilnya dari rumah
ke kantor.
1
2
- Jarak tempuh dapat dimodelkan dengan persamaan kuadrat s = ,
di mana s adalah jarak, a adalah percepatan, dan t adalah waktu. 2
- Dengan memasukkan data seperti kecepatan awal, percepatan, dan waktu
tempuh, pengemudi dapat menghitung jarak tempuh mobilnya
menggunakan persamaan kuadrat.
2. Pernyataan Masalah (3 menit)
Sebuah mobil balap melaju pada lintasan lurus. Pada waktu t=0 detik, mobil
mulai bergerak dengan percepatan tetap dan menempuh jarak yang dinyatakan
2
oleh persamaan s= +4t+4 meter. Berapa lama waktu yang dibutuhkan mobil
untuk menempuh jarak 64 meter?
Penyelesaian:
Gunakan persamaan jarak:
2
2
+4t+4 = 64 ⟹ +4t+60=0
Faktorkan persamaan kuadrat:
(t+10)(t−6)=0
Jadi, t=-10 atau t=6t =
3. Pembahasan Materi (10 menit)
Guru menjelaskan definisi dan konsep secara singkat Bilangan-bilangan kuadrat
seperti 0, 1, 4, 9, 16, 25, 36, dan seterusnya merupakan bentuk kuadrat
sempurna. Bentuk lain dari kuadrat sempurna dengan variabel x, antara lain x2,
4 , 9 , 16 , 25 , (x + 3)2, (x - 4)2, dan (x - 5)2.
2
2
2
2
Bentuk persamaan kuadrat sempurna adalah bentuk persamaan yang