Page 67 - The Toxicology of Fishes
P. 67

Bioavailability of Chemical Contaminants in Aquatic Systems                  47


                       Connor, M. S. 1984. Fish/sediment concentration ratios for organic compounds. Environ. Sci. Technol., 18:
                          31–35.
                       Cook, P.M. and Burkhard, L.P. 1998. Development of bioaccumulation factors for the Great Lakes, in
                          Proceedings of the National Sediment Bioaccumulation Conference, EPA 823-R-98-002, Office of Water,
                          U.S. Environmental Protection Agency, Washington, D.C., pp. 3-19–3-27.
                       Cook, P.M., Robbins, J., Endicott, D.D, Lodge, K.B., Walker, M.K., Zabel, E.W., Guiney, P.D., and Peterson,
                          R.E. 2003. Effects of aryl hydrocarbon receptor mediated early life stage toxicity on lake trout populations
                          in Lake Ontario during the 20th century. Environ. Sci. Toxicol., 37: 3864–3877.
                       De Schamphelaere, K.A.C. and Janssen, C.R. 2002. A biotic ligand model predicting acute copper toxicity
                          for Daphnia magna: the effects of calcium, magnesium, sodium, potassium and pH. Environ. Sci. Technol.,
                          36: 48–54.
                       de Wolf, W., de Bruijn, J.H.M., Seinen, W., and Hermens, J. 1992. Influence of biotransformation on the
                          relationship between bioconcentration factors and octanol–water partition coefficients. Environ. Sci. Tech-
                          nol., 26: 1197–1201.
                       Desbrow, C., Routledge, E.J., Brighty, G.C., Sumpter, J.P., and Waldock, M. 1998. Identification of estrogenic
                          chemicals in STW effluent. 1. Chemical fractionation and  in vitro  biological screening.  Environ. Sci.
                          Technol., 32: 1549–1558.
                       DiToro, D.M., Allen, H., Bergman, H., Meyer, J., Paquin, P., and Santore, R. 2001. A biotic ligand model of
                          the acute toxicity of metals. I. Technical basis. Environ. Toxicol. Chem., 20(1): 2383–2396.
                       Doi, A.M., Holmes, L.E., Li, C.-L.J., Venugopal, C.S., James, M.O., and Kleinow, K.M. 2000. Effect of
                                                                                               14
                          micelle fatty acid composition and 3,4,4′,4′-tetrachlorobiphenyl (TCB) exposure on intestinal [ C]-TCB
                          bioavailability and biotransformation in channel catfish in situ preparations. Toxicol. Sci., 55: 85–96.
                       Douben, P.E.T. 1989. Metabolic rate and uptake and loss of cadmium from food by the fish Noemacheilus
                          barbatulus L. (stone loach). Environ. Pollut., 59: 177–202.
                       Drexel, R.T., Haitzer, M., Ryan, J.N., Aiken, G.R., and Nagy, K.L. 2002. Mercury(II) sorption to two Florida
                          Everglades peats: evidence for strong and weak binding and competition by dissolved organic matter
                          released from the peat. Environ. Sci. Technol., 36: 4058–4064.
                       Driscoll, S.B.K. and McElroy, A.E. 1997. Elimination of sediment-associated benzo[a]pyrene and its metab-
                          olites by polychaete worms exposed to 3-methylcholanthrene. Aquat. Toxicol., 39: 77–91.
                       Driscoll, C.T., Yan, C., Schofield, C.L., Munson, R., and Holsapple, J. 1994. The mercury cycle and fish in
                          the Adirondack lakes. Environ. Sci. Technol., 28: 136A–143A.
                       Driscoll, C.T., Blette, V., Yan, C., Schofield, C.L., Munson, R., and Holsapple, J. 1995. The role of dissolved
                          organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water Air
                          Soil Pollut., 80: 499–508.
                       Eadie, B.J., Morehead, N.R., and Landrum, P.F. 1990.  Three-phase partitioning of hydrophobic organic
                          compounds in Great Lakes waters. Chemosphere, 20: 161–178.
                       Eadie, B.J., Morehead, N.R., Klump, J.V., and Landrum, P.F. 1992. Distribution of hydrophobic organic
                          compounds between dissolved and particulate organic matter in Green Bay waters. J. Great Lakes Res.,
                          18: 91–97.
                       Emerson, K., Russo, R.C., Lund, R.E., and Thurston, R.V. 1975. Aqueous ammonia equilibrium calculations:
                          effect of pH and temperature. J. Fish. Res. Board Can., 32: 2379–2383.
                       Endicott, D.D. and Cook, P.M. 1994. Modeling the partitioning and bioaccumulation of TCDD and other
                          hydrophobic organic chemicals in Lake Ontario. Chemosphere, 28: 75–87.
                       Erickson, R.J. 1985. An evaluation of mathematical models for the effects of pH and temperature on ammonia
                          toxicity to aquatic organisms. Water Res., 19: 1047–1058.
                       Erickson, R.J., Benoit, D.A., and Mattson, V.R. 1987/1996. A Prototype  Toxicity Factors Model for Site-
                          Specific Copper Water Quality Criteria, U.S. Environmental Protection Agency, Duluth, MN.
                       Erickson, R.J., Benoit, D.A., Mattson, V.R., Nelson, Jr., H.P., and Leonard, E.N. 1996. The effects of water
                          chemistry on the toxicity of copper to fathead minnows. Environ. Toxicol. Chem., 15: 181–193.
                       Erickson, R.J., Kleiner, C.F., Fiandt, J.T., and Highland  T.L. 1997. Effect of acclimation period on the
                          relationship of acute copper toxicity to water hardness for fathead minnows. Environ. Toxicol. Chem., 16:
                          813–815.
                       Erickson, R.J., McKim, J.M., Lien, G.J., Hoffman, A.D., and Batterman, S.L. 2006a. Uptake and elimination
                          of ionizable organic chemicals at fish gills. I. Model formulation, parameterization, and behavior. Environ.
                          Toxicol. Chem., 25: 1512–1521.
   62   63   64   65   66   67   68   69   70   71   72