Page 71 - The Toxicology of Fishes
P. 71

Bioavailability of Chemical Contaminants in Aquatic Systems                  51


                       Meyer, J.S., Boese, C.J., and Collyard, S.A. 2002. Whole-body accumulation of copper predicts acute toxicity
                          to an aquatic oligochaete (Lumbriculus variegatus) as pH and calcium are varied.  Compar. Biochem.
                          Physiol., 133C: 99–110.
                       Meyer, J.S., Adams, W.J., Brix, K.V., Luoma, S.N., Mount, D.R., Stubblefield, W.A., and Wood, C.M., Eds.
                          2005. Toxicity of Dietborne Metals to Aquatic Organisms, SETAC Press, Pensacola, FL.
                       Miller, T.G. and Mackay, W.C. 1980. The effects of hardness, alkalinity, and pH of test water on the toxicity
                          of copper to rainbow trout (Salmo gairdneri). Water Res., 14: 129–133.
                       Miskimmin, B.M. 1991. Effect of natural levels of dissolved organic carbon (DOC) on methylmercury
                          formation and sediment-water partitioning. Bull. Environ. Contam Toxicol., 47: 743–750.
                       Morel, F.M.M. 1983. Principles of Aquatic Chemistry, Wiley-Interscience, New York.
                       Muramoto, S. 1980. Effect of complexants (EDTA, NTA and DTPA) on the exposure to high concentrations
                          of cadmium, copper, zinc and lead. Bull. Environ. Contam. Toxicol., 25(6): 941–946.
                       Naddy, R.B., Stubblefield, W.A., May, J.R., Tucker, S.A., and Hockett, J.R. 2002. The effect of calcium and
                          magnesium ratios on the toxicity of copper to five aquatic species in freshwater. Environ. Toxicol. Chem.,
                          21: 347–352.
                       National Research Council. 2003. Bioavailability of Contaminants in Soils and Sediments: Processes, Tools,
                          and Applications, National Academy of Sciences, Washington, D.C.
                       Nichols, J.W., Jensen, K.M., Tietge, J.E., and Johnson, R.D. 1998. Physiologically based toxicokinetic model
                          for maternal transfer of 2,3,7,8-tetrachlorodibenzo-p-dioxin in brook trout (Salvelinus fontinalis). Environ.
                          Toxicol. Chem., 17: 2422–2434.
                       Nichols, J.W., Fitzsimmons, P.N., Whiteman, F.W., Kuehl, D.W., Butterworth, B.C., and Jenson, C.T. 2001.
                          Dietary uptake kinetics of 2,2′,5,5′-tetrachlorobiphenyl in rainbow trout.  Drug Metab. Dispos., 29:
                          1013–1022.
                       Nichols, J.W., Fitzsimmons, P.N., Whiteman, F.W., Dawson, T.D., Babeu, L., and Juenemann, J. 2004. A
                          physiologically based toxicokinetic model for dietary uptake of hydrophobic organic compounds by fish.
                          I. Feeding studies with 2,2′,5,5′-tetrachlorobiphenyl. Toxicol. Sci., 77: 206–218.
                       Niimi, A.J. and Oliver, B.G. 1988. Influence of molecular weight and molecular volume on dietary absorption
                          efficiency of chemicals by fishes. Can. J. Fish. Aquat. Sci., 45: 222–227.
                       Norstrom, R.J., McKinnon, A.E., and DeFreitas, A.S.W. 1976. A bioenergetics-based model for pollutant
                          accumulation by fish. Simulation of PCB and methylmercury residue levels in Ottawa River yellow perch
                          (Perca flavescens). J. Fish. Res. Board Can., 33: 248–267.
                       Opperhuizen, A., van der Velde, E.W., Gobas, F.A.P.C, Kiem, D.A.K., and van der Steen, J.M.D. 1985.
                          Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere,
                          14: 1871–1896.
                       Oris, J.T. and Giesy, Jr., J.P. 1987. The photo-induced toxicity of polycyclic aromatic hydrocarbons to larvae
                          of the fathead minnow (Pimephales promelas). Chemosphere, 16: 1395–1404.
                       Pagenkopf, G.K. 1983. Gill surface interaction model for trace-metal toxicity to fishes: role of complexation,
                          pH, and water hardness. Environ. Sci. Technol., 17: 342–347.
                       Paquin P.R., Gorsuch, J.W. et al. 2002a. The biotic ligand model: a historical overview. Compar. Biochem.
                          Physiol., 133C: 3–35.
                       Paquin P.R., Zoltay, V.,  Winfield, R.P.,  Wu, K.B., Mathew, R., Santore, R.C., and Di  Toro, D.M. 2002b.
                          Extension of the biotic ligand model of acute toxicity to a physiologically based model of the survival
                          time of rainbow trout (Oncorhynchus mykiss) exposed to silver.  Compar. Biochem. Physiol., 133C:
                          305–343.
                       Pelletier, E. 1995. Environmental organometallic chemistry of mercury, tin, and lead: present status and
                          perspectives, in Metal Speciation and Bioavailability in Aquatic Systems, Tessier, E. and Turner, D.R.,
                          Eds., John Wiley & Sons, New York, pp. 103–148.
                       Penry, D.L. 1998. Applications of efficiency measurements in bioaccumulation studies: definitions, clarifica-
                          tions, and a critique of methods. Environ. Toxicol. Chem., 17: 1633–1639.
                       Petersen, G.I. and Kristensen, P. 1998. Bioaccumulation of lipophilic substances in fish early life stages.
                          Environ. Toxicol. Chem., 17: 1385–1395.
                       Peterson, H.G., Healey, F.P., and  Wagemann, R. 1984. Metal toxicity to algae: a highly pH dependent
                          phenomenon. Can. J. Fish. Aquat. Sci., 41: 974–979.
                       Phillips, G.R. and Gregory, R.W. 1979. Assimilation efficiency of dietary methylmercury by northern pike
                          (Esox lucius). J. Fish. Res. Board Can., 36: 1516–1519.
   66   67   68   69   70   71   72   73   74   75   76