Page 70 - The Toxicology of Fishes
P. 70

50                                                         The Toxicology of Fishes


                       Leversee, G.J., Giesy, J.P., Landrum, P.F., Gerould, S., Bowling, J.W., Fannin, T.E., Haddock, J.D., and Bartell,
                          S.M. 1982. Kinetics and biotransformation of benzo(a)pyrene in  Chironomus riparius. Arch. Environ.
                          Contam. Toxicol., 11: 25–31.
                       Levine, S.L., Czosnyka, H., and Oris, J.T. 1997. Effect of the fungicide clotrimazole on the bioconcentration
                          of benzo[a]pyrene in gizzard shad (Dorosoma cepedianum): in vivo and in vitro inhibition of cytochrome
                          P4501A activity. Environ. Toxicol. Chem., 16: 306–311.
                       Lien, G.J., Nichols, J.W., McKim, J.M., and Gallinat, C.A. 1994. Modeling the accumulation of three
                          waterborne chlorinated ethanes in fathead minnows (Pimephales promelas): a physiologically based
                          approach. Environ. Toxicol. Chem., 7: 1195–1205.
                       Lima, A.L.C., Eglinton, T.I., and Reddy, C.M. 2003. High-resolution record of pyrogenic polycyclic aromatic
                          hydrocarbon deposition during the 20th century. Environ. Sci. Toxicol., 37: 53–61.
                       Lloyd, R. and Herbert, D.W.M. 1960. The influence of carbon dioxide on the toxicity of un-ionized ammonia
                          to rainbow trout (Salmo gairdneri Richardson). Ann. Appl. Biol., 48: 399–404.
                       Lloyd, R. and Herbert, D.W.M. 1962. The effect of the environment on the toxicity of poisons to fish. J. Inst.
                          Public Health Eng., 61: 132–138.
                       Lodge, K.B. and Cook, P.M. 1989. Partitioning studies of dioxin between sediment and water: the measurement
                          of K oc  for Lake Ontario sediment. Chemosphere, 19: 439–444.
                       Lu, X., Reible, D.D., and Fleeger, J.W. 2004. Relative importance of ingested sediment versus pore water as
                          uptake routes for PAHs to the deposit-feeding oligochaete Ilyodrilus templetoni. Arch. Environ. Contam.
                          Toxicol., 47: 207–214.
                       Maccubbin, A.E., Black, P., Trzeciak, L., and Black, J.J. 1985. Evidence for polynuclear aromatic hydrocarbons
                          in the diet of bottom-feeding fish. Bull. Environ. Contam. Toxicol., 34: 876–882.
                       MacRae, R.K., Smith, D.E., Swoboda-Colberg, N.S., Meyer, J.S., and Bergman, H.L. 1999. Copper binding
                          affinity of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) gills: implication
                          for assessing bioavailable metal. Environ. Toxicol. Chem., 18: 1180–1189.
                       Mason, R.P. and Sullivan, K.A. 1997. Mercury in Lake Michigan. Environ. Sci. Technol., 31: 942–947.
                       Mason, R.P., Reinfleder, J.R., and Morel, F.M.M. 1996. Uptake, toxicity, and trophic transfer of mercury in
                          a coastal diatom. Environ. Sci. Technol., 30: 1835–1845.
                       McCarthy, J.F. and Jimenez, B.D. 1985. Interactions between polycyclic aromatic hydrocarbons and dissolved
                          humic material: binding and dissociation. Environ. Sci. Technol., 19: 1072–1076.
                       McCloskey, J.T., Schultz, I.R., and Newman, M.C. 1998. Estimating the oral bioavailability of methylmercury
                          to channel catfish (Ictalurus punctatus). Environ. Toxicol. Chem., 17: 1524–1529.
                       McElroy, A., Leitch, K., and Fay, A. 2000. A survey of in vivo benzo[a]pyrene metabolism in small benthic
                          invertebrates. Marine Environ. Res., 50: 33–38.
                       McGroddy, S.E., Farrington, J.W., and Gschwend, P.M. 1996. Comparison of the  in situ  and desorption
                          sediment: water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ.
                          Sci. Technol., 30: 172–177.
                       McKim, J.M. and Erickson, R.J. 1991. Environmental impacts on the physiological mechanisms controlling
                          xenobiotic transfer across fish gills. Physiol. Zool., 64: 39–67.
                       McKim, J.M., Schmieder, P.K., and Veith, G.D. 1985. Absorption dynamics of organic chemical transport
                          across trout gills as related to octanol–water partition coefficient. Toxicol. Appl. Pharmacol., 77: 1–10.
                       McKim, J.M., Nichols, J.W., Lien, G.J., Hoffman, A.D., Gallinat, C.A., and Stokes, B.N. 1996. Dermal
                          absorption of three waterborne chloroethanes in rainbow trout (Oncorhychus mykiss) and channel catfish
                          (Ictalurus punctatus). Fundam. Appl. Toxicol., 31: 218–228.
                       McLean, E. and Donaldson, E.M. 1990. Absorption of bioactive proteins by the gastrointestinal tract of the
                          fish: a review. J. Aquat. Anim. Health, 2: 1–11.
                       Meador, J.P., Stein, J., Reichert,  W.L., and  Varanasi, U. 1995. Bioaccumulation of polycyclic aromatic
                          hydrocarbons by marine organisms. Rev. Environ. Contam. Toxicol., 143: 79–165.
                       Metcalfe, C.D., Metcalfe, T.L., Riddle, G., and Haffner, G.D. 1997. Aromatic hydrocarbons in biota from the
                          Detroit River and western Lake Erie. J. Great Lakes Res., 23: 160–168.
                       Meyer, J.S. 1999. A mechanistic explanation for the ln(LC50) vs. ln(hardness) adjustment equation for metals.
                          Environ. Sci. Technol., 33: 908–912.
                       Meyer, J.S., Santore, R.C., Bobbitt, J.P., DeBrey, L.D., Boese, C.J., Paquin, P.R., Allen, H.E., Bergman, H.L.,
                          and DiToro, D.M. 1999. Binding of nickel and copper to fish gills predicts toxicity when water hardness
                          varies, but free-ion activity does not. Environ. Sci. Technol., 33: 913–916.
   65   66   67   68   69   70   71   72   73   74   75