Page 159 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 159

The actual yield deviation at 305 DIM for cow 6 using Eqn 9.2 with uˆ replaced with
        YD  is −1086.6450.
           6
            The equation for the partitioning of random regression coefficients for animals
        to contributions for parent average, yield deviations and progeny is:
            u    = W PA + W (YD) + W PC                                      (9.4)
            ˆ
             anim   1       2        3
        with:
            PC = å a prog ( 2u ˆ  prog - u ˆ  mate ) å a prog  and  W + W +  W = I
                                    /
                                                    1
                                                         2
                                                              3
        This is the same equation as Eqn 5.8, which partitioned breeding values under the
        multivariate model. The weights W , W  and W  are as defined in Eqn 5.8, but
                                         1   2      3
        here W  is of the order of orthogonal polynomials for animal effects. Illustrating
               i
        with cow 6, the weights on parent average (W ) and yield deviation (W ) can be
                                                   1                     2
        calculated as:
                                            −
                                             1
                 ⎡  2.1520 − 0.9957  2.0986⎤ ⎡  1.4781 − 0.3473 1.9313⎤
                 ⎢
            W  =  − 0.9957  3.2921 − 0.3580 ⎥ ⎢ − 0.3473  2.4685 0.2326 ⎥
              1  ⎢                         ⎥ ⎢                         ⎥
                 ⎢ ⎣  2.0986  − 0.3580  5.7284⎥ ⎢  1.99313  0.2326 4.7107⎥ ⎦
                                 0
                                           ⎦ ⎣
                         ′
                           −1
                      (QR Q      −1  ) −1               −1   )
                                    6                2 ( G a par
                              + G a
                 ⎡ 0.66156 0.1940 0.2987⎤ ⎤
                 ⎢
               = 0.0935 0.8107 0.2402   ⎥ ⎥
                 ⎢
                 ⎢ ⎣ 0.1175 0.0202 0.7279⎥ ⎦
                           W1
        and:
                                            −1
                 ⎡  2.1520  −0.9957  2.0986⎤ ⎡  0.6738 − 0.6484   0.1674⎤
                 ⎢                         ⎥ ⎢                          ⎥
            W  =  −0.9957   3.2921  −0.3580    − 0.6484  0.8235 − 0.5906
              2  ⎢                         ⎥ ⎢                          ⎥
                 ⎢ ⎣  2.0986  −0.3580  5.7284⎥ ⎢  0..1674 − 0.5906  1.0177⎥ ⎦
                                           ⎦ ⎣
                                 0
                                 −1
                          −1
                                                        ′
                        ′
                      (QR Q   + G a 6 ) −1           (Q R −1 Q )
                 ⎡  0.33844 − 0.1940 − 0.2987⎤
                 ⎢
               = − 0.0935   0.1893 − 0.2402 ⎥ ⎥
                 ⎢
                                          1
                 ⎣ − ⎢  0.1175 − 0.0202  0.2721⎥ ⎦
                               W2
        The contributions from PA and YD to the random regression coefficients for cow
        6 are:
            é  0 ˆ u ù  - é  0.2560ù  - - é 5.0004 ù é -0.1221ù  - é 0.4265 ù é -0.5485ù
            ê  ú     ê       ú     ê       ú ê  0.0057 +  ê      ú ê        ú
                                                      ú
                                                                 ú ê
                             ú
                                   ê
            ê  1 ˆ u  ú  = W 1 ê  0.0016 + W 2 -4.6419  =   ú  ê  0.0674  =   0.0730 ú
                                           ú ê
            ê  2 ˆ u ë  ú û  ê ë  0.1178ú û  ê ë -1.9931 ú ê ê  0.0557ú û  ê 0.1389 ú ê  0.19946ú û
                                                                 û ë
                                                         ë
                                           û ë
        Analysis of Longitudinal Data                                        143
   154   155   156   157   158   159   160   161   162   163   164