Page 169 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 169

ˆ
                                                      ˆ
                               ˆ
                                                 ˆ
        plus 2. In estimating cov(W , W ) and cov (W , W ), df = (s − 1) + 2 and s(n − 1)
                                a,ij  a,kl        e,ij  e,kl
        + 2, respectively. The estimated V therefore is:
               ⎡ 3450.0 2256.4 2184.6 2256.4 1480.3 1434.7 2184.6 1434.7   1390.9⎤
               ⎢ 2256.4 2959.6 2430.9 2959.6 2903.5 2530.2 2430.9 2530.2   2180.1 ⎥
                                          6
               ⎢                                                                ⎥
               ⎢ 2184.6 2430.9 3889.7 2430.9 2249.1 3181.6 38889.7 3181.6  4051.5 ⎥
               ⎢ 2256.4 2959.6 2430.9 29559.6 2903.5 2530.2 2430.9 2530.2  2180.1 ⎥
               ⎢
            ˆ
            V =  1480.3 2903.5 2249.1 2903.5 5711.4 4410.0 2249.1 4410..0  3417.5 ⎥ ⎥
               ⎢
               ⎢ 1434.7 2530.2 3181.6 2530.2 4410.0  5818.8 3181.6 5818.8  6354.3⎥
                                   6
               ⎢                                                                ⎥ ⎥
               ⎢ 2184.6 2430.9 3889.7 2430.9 2249.1 3181.6 3889.7 3181.6   4051.5 ⎥
               ⎢ ⎢ 1434.7 2530.2 31881.6 2530.2 4410.0  58818.8 3181.6 5818.8  6354.3⎥
               ⎢ ⎣ 1390.9 2180.1 4051.5 2180.1 3417.5 6354.3 4051.5 6354.3 11835.0 ⎥ ⎦
                                    ˘
            However, the symmetry of G  resulted in redundancies in the vector g˘ such that
        V is singular. The vector g˘ can be redefined to be of the order s by 1, which contains
                                          ˘
        only the elements in the lower half of G, where s = t(t + 1)/2. Therefore, delete from
                      ˘
                                                          ˘
        g˘ the elements G  for which i < j. Thus for the example G, the vector g˘ becomes:
                       ij
            g˘ = [132.3  127.0  136.6  172.8  200.8  288.0]
                                                                       ˘
        Then delete from V those columns and rows corresponding to elements G  with i < j.
                                                                        ij
        This involves deleting rows and columns 4, 7 and 8 from the matrix V given above.
        The V of reduced order (s by s) is:
               é 3450.0 2256.4 2184.6 1480.3 1434.7      1390.9ù
               ê                                                ú
                                     9
               ê 2256.4 2959.6 2430.9 2903.5 2530.2      2180.1 ú
               ê 2184.6 2430.9 3889.7   2249.1 3181.6    4051.5ú
            ˆ
            V = ê                                               ú
               ê 14880.3 2903.5 2249.1 5711.4 4410.0     3417.5 ú
               ê ê 1434.7 2530.2 3181.6 4410.00 5818.8   6354.3 ú
               ê                                                ú
               ë ê 1390.9 2180.1 4051.5 3417.5 6354.3 11835.0ú  û
                                                                        ˘
            Similarly, the rows corresponding to those elements of g for which G  has i < j
                                                            ˘
                                                                         ij
        are deleted from X . In the example X , rows 4, 7 and 8 are deleted. Thus X  becomes:
                        s                s                               s
                é 0.5000 - 0.8660 - 0.8660   1.4999ù
                ê 0.5000 -        -                ú
                ê         0.0577   0.8660    0.0999 ú ú
                ê 0..5000  0.8660 - 0.8660 - 1.4999ú
            X s  = ê                               ú
                ê 0.5000 - 0.0577 - 0.0577  0.0067 ú
                ê 0.5000  0 0.8660 - 0.0577 - 0.0999 ú
                ê                                  ú
                ë ê 0.5000  0.8660  0.8660   1.4999ú û
                                             ˇ
            Also, for each element of cˇ for which C  has i < j, add the corresponding column
                                              ij
                                         ˇ
        of X  to the column corresponding to C , then delete the former column. For the beef
            s                             ji
                                                         ˇ
                                                            ˇ
                                                  ˇ
        cattle example, the vector of coefficients, c′ = [C 00  C ˇ  10  C 01  C ]. Therefore, the third
                                             ˇ
                                                             11
                                    ˇ
        column of X  corresponding to C  is added to the second column and the third col-
                   s                 01
        umn is deleted. The matrix X  then becomes:
                                  s
        Analysis of Longitudinal Data                                        153
   164   165   166   167   168   169   170   171   172   173   174