Page 222 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 222

12.3.1  Solving for animal and dominance genetic effects separately

         Example 12.1
         Suppose the data below are the weaning weights for some piglets in a herd.

           Pig         Sire        Dam         Sex            Weaning weight (kg)

            5           1            2         Female               17.0
            6           3            4         Female               20.0
            7           6            5         Female               18.0
            8           0            5         Female               13.5
            9           3            8         Male                 20.0
           10           3            8         Male                 15.0
           11           6            8         Male                 25.0
           12           6            8         Male                 19.5

         The aim is to estimate sex effects and predict solutions for animal and dominance
                                                       2
                                   2
                                            2
         genetic effects, assuming that s  = 120, s  = 90 and s  = 80. This has been illustrated
                                   e        a          d
         below, solving for animal and dominance effects separately (Eqn 12.3). From the
         above parameters, a  = 1.333 and a  = 1.5.
                          1             2
         SETTING UP THE MME
         The matrix X relates records to sex effects. Its transpose, considering only animals
         with records, is:

                é 1111 0000ù
            X′ =  ê                   ú
                ë 0000 1111           û
         The matrices  Z and  W are both identity matrices since each animal has
         one record. The transpose of the vector of observations y′ = [17 20 18 13.5 20
         15 25 19.5].
                                                                −1
                                                        −1
            The other matrices in the MME, apart from  A  and  D , can be obtained
         through matrix multiplication from the matrices already calculated. The inverse of
         the additive relationship matrix is set up using rules outlined in Section 2.4.1. Using
         Eqn 12.1, the dominance relationship matrix is:
               é 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000ù
                                                                         0
               ê                                                               ú
               ê 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0..000 0.000 ú
               ê 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000ú
               ê                                                               ú
               ê 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 00.000 0.000 0.000 ú
               ê 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 ú
               ê                                                               ú
               ê 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000ú
                                                         0
            D =  ê                                                             ú
               ê 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0..000 0.062 0.062 0.125 0.125 ú
               ê 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 1.000 0.000 0.000 0.000 0.000ú
               ê                                                               ú
               ê 0.000 0.000 0.000 0.000 0.000 0.000 00.062 0.000 1.000 0.250 0.125 0.125 ú
               ê 0.000 0.000 0.000 0.000 0.000 0.0000 0.062 0.000 0.250 1.000 0.125 0.125 ú
               ê                                                               ú
               ê 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.125 0.125 1.000 0.250ú
                                        0
               ê ê                                                             ú
               ë 0.000 0.000 0.000 0.000 0..000 0.000 0.125 0.000 0.125 0.125 0.250 1.000 û
          206                                                            Chapter 12
   217   218   219   220   221   222   223   224   225   226   227