Page 223 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 223

and its inverse is:
                é 1.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000  0.000  0.000  0.0000  0.000 ù
                ê                                                               ú
                ê 0.000 1.000 0.000 0.000 0.000 0.000  0.000 0.000  0.000  0.000 0  0.000  0.000 ú
                ê 0.000 0.000 1.000 0.000 0.000 0.000  0.000 0.000  0.000  0..000  0.000  0.000 ú
                ê                                                               ú
                ê 0.000 0.000 0.000 1.000 0.000 0.000  0.000 0.000  0.0000  0.000  0.000  0.000 ú
                ê 0.000 0.000 0.000 0.000 1.000 0.000  0.000 0.000  0 0.000  0.000  0.000  0.000 ú
                ê                                                               ú
                ê 0.000 0.000 0.000 0.000 0.000 1.000  0.000 0.0000  0.000  0.000  0.000  0.000 ú
              -1
            D   =  ê                                                            ú
                                                   8
                ê 0.000 0.000 0.000 0.000 0.000 0.000  1.028 0.000 - 0.032 - 0.032 - 0.096 - 0.096 ú
                ê 0.000 0.000 0.000 0.000 0.000 0.0000  0.000 1.000  0.000  0.000  0.000  0.000 ú
                ê                                                               ú
                ê 0.000 0.000 0.000 0.000 0.000 0.000 - 0.032 0.000  1.084 - 0.249 - 0.080 - 0.080 ú
                                        0
                ê                                                               ú
                ê 0.000 0.000 0.000 0.0000 0.000 0.000 - 0.032 0.000 - 0.249  1.084 - 0.080 - 0.080 ú
                ê                                                0.080      0.241 ú
                ê 0.000 0.000 00.000 0.000 0.000 0.000 - 0.096 0.000 - 0.080 -  1.092 -  ú
                ë 0.0000 0.000 0.000 0.000 0.000 0.000 - 0.096 0.000 - 0.080 - 0.080 - 0.241  1..092 û
                      −1
        The matrices A a  and D a  are added to Z′Z and W′W in the MME. The MME
                               −1
                        1         2
        are of the order 26 by 26 and are too large to be presented. However, the solutions
        to the MME by direct inversion of the coefficient matrix are:
                       Effects         Solutions
                       Sex
                         Female         16.980
                         Male           20.030
                       Animal             BV a                DV a
                          1             −0.160               0.000
                          2             −0.160               0.000
                          3              0.059               0.000
                          4              0.819               0.000
                          5             −0.320               0.136
                          6              1.259               0.705
                          7              0.555               0.237
                          8             −0.998             −0.993
                          9             −0.350               0.000
                         10             −1.350             −1.333
                         11              1.061               1.428
                         12             −0.039             −0.038

                       a BV, DV, solutions for random animal and dominance effects,
                       respectively.

            The results indicate that males were heavier than females by about 3.05 kg
                                                   ˆ
        at weaning. The breeding value for animal  i, a, from the MME can be calcu-
                                                    i
        lated using Eqn 3.8, except that yield deviation is corrected not only for fixed effects
        but also for dominance effect. Thus the solution for animal 6 can be calculated as:
                                    ˆ
                                         ˆ
            a  = n ((aˆ  + aˆ )/2) + n (y  − b  − d ) + n (2aˆ  − aˆ ) + n (2aˆ  − aˆ ) + n (aˆ  − aˆ )
            ˆ
             6   1  3   4      2  6  1   6    3  12   8    3  11   8   3  7  5
              = n (0.059 + 0.819)/2 + n (20 − 16.980 − 0.705) + n (2(−0.039) − (−0.998))
                 1                   2                      3
                + n (2(1.061) − (−0.998)) + n (2(0.555) − (−0.320))
                   3                     3
              = 1.259
        Non-additive Animal Models                                           207
   218   219   220   221   222   223   224   225   226   227   228