Page 226 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 226

If the nine subclasses in Eqn 12.6 are identified by 1, 2, 3, 4, 5, 6, 7, 8 and 9 (i.e. f  = 1,
                                                                            SD
                                                                                2
         f   = 2, etc.), the covariances between f  and its parent subclasses (cov(f , f )/s )
         S,SD                              SD                           SD  par  f
         using Eqn 12.9 are:
                   2        3       4       5       6       7       8        9
           1  [0.5  0.5  0.5  0.5  0.25  0.25  0.25  0.25]                 (12.10)
                                                                2
         and the relationship matrix among parent subclasses (var(f )/s ) using Eqn 12.9 is:
                                                           par  f
            ⎡ 1.0  0.0  0.25 0.25 0.5 0.0 0.5 0.0⎤
            ⎢                                       ⎥
            ⎢ 0.0  1.0  0.25 0.25 0.0 0.5 0.0 0.5   ⎥
            ⎢ 0.25 0.225 1.0  0.0   0.5 0.5 0.0 0.0⎥
            ⎢                                       ⎥
            ⎢ 0.25 0.25 0.0   1.0   0.0 0.0 0.5 0.5 ⎥
            ⎢ 0.5  0.0  0.5   0.00  1.0 0.0 0.0 0.0 ⎥                      (12.11)
            ⎢                                       ⎥
            ⎢ 0.0  0.5  0.5   0.0   0.0 1.0 0.0 0.0 ⎥
            ⎢                                       ⎥
            ⎢ 0.5  0.0  0.0   0.5   0.0 0.0 1.000.0 ⎥
            ⎣ ⎢ 0.0  0.5  0.0  0.5  0.0 0.0 0.0 1.0⎥ ⎦
         From the two matrices above (Eqns 12.10 and 12.11) the regression coefficients
         (Eqn 12.7) are:

            b′ = [0.5 0.5 0.5 0.5 −0.25 −0.25 −0.25 −0.25]                 (12.12)

         which are identical to the coefficients in Eqn 12.6. It should be noted that there is
         no need to add more remote ancestors of S and D as the partial regression of these
         are zero.



         12.4.1  Inverse of the relationship matrix of subclass effects

         The recurrences in Eqn 12.6 could be represented as:
            f = Qf + e                                                     (12.13)

         where f is the vector of sire by dam subclasses and the row i of Q contains the elements
         of b from Eqn 12.7 in columns pertaining to identified parent subclasses of subclass i.
                                                         2
         The relationship matrix for subclasses in f is F = var(f)/s . From Eqn (12.13):
                                                         f
            f = (I − Q) e
                     −1
         The variance–covariance of f is:
                      2        −1       −1  2
                      f                    f
            var(f) = Fs  = (I − Q′) R(I − Q) s
         with:
            Rs  = var(e)
               2
               f
         Therefore:
            F  = (I − Q′) R (I − Q)                                        (12.14)
             −1
                          −1
          210                                                            Chapter 12
   221   222   223   224   225   226   227   228   229   230   231