Page 230 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 230

−1
         The contribution of f  to F  therefore is:
                           6,8
                         1     2      3      6
                     ⎡  1.00 − 0.50  − 0.50  0.25  ⎤
                     ⎢
                 11  = −             0.25 −       ⎥
            cc′ r      0.50  0.25          0.125   1.778
             11      ⎢                            ⎥
                      − ⎢  0.50  0..25  0.25 − 0.125 ⎥
                     ⎢                            ⎥
                     ⎣  0.25 − 0.125  0.125 0.0625 ⎦

               11
         where r  = 1/(1 − (b′ F b )) = 1/(1 − 0.4375) = 1.778 (see Eqn 12.8).
                          1  1 1
                                          −1
            Processing of all subclasses gives F  as:
                      1      2       3      4     5       6
                 ⎡  1.778  −0.889  −0.889  0.000 0.000  0.445 ⎤
                 ⎢                        0.000 0.000 −      ⎥
                                      5
                 ⎢ −0.889  1.778  0.445                 0.889  ⎥
                 ⎢
             −1 = −                       0.000 0.000 − 0.889 ⎥
            F      0.889  0.445   1.778
                 ⎢                                           ⎥
                 ⎢  0.000  0.0000  0.000  1.000 0.000   0.000  ⎥
                 ⎢  0.000  0.000  0.000   0.000 1.000   0.000  ⎥
                 ⎢                                           ⎥
                 ⎣ ⎢  0.445 −0.889  −0.889  0.000 0.000  1.778 ⎥ ⎦
                         −
            The methodology can be verified by calculating the dominance relationship
         matrix among animals as D = (0.25)SFS′ + I(0.75), which should give the same D as
         that calculated using Eqn 12.1. S, as defined earlier, relates dominance effects to sub-
         class effects. For the example pedigree:

                   5 6 7 9 10 11 12
                  ⎡
                1 0000         0   1  1 ⎤
                  ⎢                      ⎥
                2 0010         0   0  0  ⎥
                  ⎢
                  ⎢
             ′ S =  3 000 1    1   0  0 ⎥ ⎥
                  ⎢
                4 01 0 0       0   0  0  ⎥
                  ⎢
                  ⎢
                5 1 0 0 0      0   0  0  ⎥ ⎥
                  ⎢
                6 ⎢ ⎣ 000 0    0   0  0 ⎥ ⎦
                         0
         and:
            D = (0.25)SFS′ + I(0.75)
                 5 6 7        9      10      11    12
                ⎡ 10 0        0       0       0      0    ⎤
                ⎢                                         ⎥
                ⎢ 01 0        0       0       0      0    ⎥
                ⎢ 0 0 1       0.0625 0.0625 0.125 0.125 ⎥
              = ⎢                                         ⎥
                              1
                ⎢ 0 0 0.0625 1        0.25    0.125 0.125 ⎥
                ⎢ 0 0 0.0625 0.25     1       0.125 0.125 ⎥
                ⎢                                         ⎥
                ⎢ 0 0 0.125   0.125   0.125   1      0..25 ⎥
                ⎢                                         ⎥
                ⎣ 0 0 0.125   0.125   0.125   0.25   1    ⎦


          214                                                            Chapter 12
   225   226   227   228   229   230   231   232   233   234   235