Page 329 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 329

Thus the solution for b from the MME is equal to the GLS solution for b in Eqn c.3.
                                                              ˆ
                                                       −1
            The proof that aˆ from the MME is equal to GZ′V (y − Xb) in Eqn c.3 was given
                                                     ˆ
                                     −1
                                              −1
                                                                         −1
                                                                 −1
                                                            −1
        by Henderson (1963). Replace V  in GZ′V (y − Xb) by R  – R ZWZ′R , thus:
                        ˆ
                                                       ˆ
                                               −1
                 −1
                                  −1
                                       −1
            GZ′V (y − Xb) = GZ′(R  − R ZWZ′R )(y − Xb)
                                                         ˆ
                                 −1
                                                 −1
                                         −1
                          = G(Z′R  − Z′R ZWZ′R )(y − Xb)
                                                     ˆ
                                             −1
                                    −1
                          = G(I − Z′R ZW)Z′R (y − Xb)
                                                       ˆ
                                                −1
                                −1
                                       −1
                          = G(W  − Z′R Z)WZ′R (y − Xb)
                                                               ˆ
                                                        −1
                                       −1
                                               −1
                          = G((Z′RZ + G ) − Z′R Z)WZ′R (y − Xb)
                                                              ˆ
                                              −1
                                 −1
                                                       −1
                          = GZ′R Z + I − GZ′R Z)WZ′R (y − Xb)
                                          ˆ
                                   −1
                          = (I)WZ′R (y − Xb)
                                        ˆ
                                 −1
                          = WZ′R (y − Xb) = aˆ                        (See Eqn c.6)
                                   ˆ
                                              ˆ
                                                    ˆ
        Thus the BLUP of k′b + a = k′b + a, where b and a are solutions to the MME.
                                      ˆ
        C.3 Deriving the Equation for Progeny Contribution (PC)
        Considering an individual i that has one record with both sire (s) and dam (d) known,
        the MME for the three animals can be written (assuming the sire and dam are ances-
        tors with unknown parents) as:
                                   ˆ ⎡
            u ⎡  ss a  u  sd a  u si a⎤ ˆ a ⎤ ⎡ 0 ⎤
                                    s
            ⎢                   ⎥ ⎢  ⎥ ⎢   ⎥                                  (c.8)
                                    ⎥ ⎢
            ⎢ u  ds a  u dd a  u  di a ⎥ ⎢  ˆ a  =   0 ⎥
                                   d
                                 ⎢
            ⎢ u ⎣  is a  u id a 1 + uii a⎥ ˆ a i ⎦ ⎣  ⎥ ⎦
                                ⎦ ⎣
                                    ⎥ ⎢1′y
                                        −1
        where the u terms are elements of A .
        From Eqn c.8, the equation for solution of the sire is:
            u aa  = 0 − u a a  − u aa ˆ
                ˆ
                           ˆ
             ss  s      sd  d   si  i
                ˆ
            u a a  = PC
             ss  s
        with:
            PC = 0 − u aaˆ  − u aaˆ
                      sd  d   si  i
        When the mate is known:
            PC = 0 −  1 aaˆ  + (1)aaˆ
                     2  d        i
                         ˆ
                                    ˆ
                   ˆ
                       1
                                        ˆ
            PC = a(a  −  a ) = 0.5a(2a  − a )
                    i  2  d          i  d
        In general, assuming sire s has k progeny:
                                 ˆ
                             ˆ
            PC  = 0.5aΣu   (2a  − a )/Σu
               s      k  prog  i  m  k  prog
        where u    is 1 when the mate of s is known or   when the mate is not known.
                                                  2
               prog                               3
        Appendix C                                                           313
   324   325   326   327   328   329   330   331   332   333   334